• Title/Summary/Keyword: rotating display

Search Result 70, Processing Time 0.023 seconds

APPLICATION OF DISTINCT ELEMENT METHOD TO SIMULATE MACHINE-SOIL INTERACTIONS

  • Oida, A.;Momozu, M.;Ibuki, T.;Nakashima, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.117-123
    • /
    • 2000
  • Using the modified DEM (Discrete Element Method), which we proposed in order to improve the accuracy of the simulation, soil behavior and reaction by lugs of rotating wheel and a soil cutting process by a high speed blade were calculated and compared with experimental data. The DEM is one of computational mechanics, where the object body is supposed as an assembly of small particles called elements and not a continuum as in the case of FEM. We can easily treat some discrete phenomena such as cracking, separating and sliding by the DEM. We had to modify the original mechanical model, which induced too free movement of elements, adding a tension spring, which would display the role of soil adhesion. The results of DEM simulations were successful from both the soil behavior and reaction points of view.

  • PDF

Effect on Audio Play Latency for Real-Time HMD-Based Headphone Listening (HMD를 이용한 오디오 재생 기술에서 Latency의 영향 분석)

  • Son, Sangmo;Jo, Hyun;Kim, Sunmin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.141-145
    • /
    • 2014
  • A minimally appropriate time delay of audio data processing is investigated for rendering virtual sound source direction in real-time head-tracking environment under headphone listening. Less than 3.7 degree of angular mismatch should be maintained in order to keep desired sound source directions in virtually fixed while listeners are rotating their head in a horizontal plane. The angular mismatch is proportional to speed of head rotation and data processing delay. For 20 degree/s head rotation, which is a relatively slow head-movement case, less than total of 63ms data processing delay should be considered.

  • PDF

Measurement of Cell Gap of Reflective LCD and Study of :Error Rate (반사형 LCD의 Cell Gap 측정 및 오차율 연구)

  • 이서헌;박원상;이기동;김재창;윤태훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.142-143
    • /
    • 2001
  • Cell gap은 LCD(Liquid Crystal Display)의 중요한 파라미터들 중의 하나이다. cell gap이 LCD의 광학적인 성능에 영향을 주기 때문에 정확한 cell gap 측정방법은 제조공정을 향상시키는데 중요하다 특히 최근 고속 영상 디스플레이를 제공할 수 있는 장점 때문에 낮은 cell gap의 LCD가 요구되고 있는 시장 추세에 따라 낮은 cell gap을 측정할 수 있는 기술이 요구되고 있다. LCD의 cell gap 측정 방법들 가운데 가장 보편화되어 있는 것으로 회전편광자법(rotating polarizer method)[1, 2]과 위상보상법(phase compensation method)[3,4]을 들 수 있는데 낮은 셀갭을 정확히 측정하기가 어려우며 주기적인 해가 발생한다는 단점이 있다. (중략)

  • PDF

Muller matrix ellipsometry 제작 및 응용

  • 방경윤;경재선;오혜근;김옥경;안일신
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.12-17
    • /
    • 2003
  • We develop Mueller-matrix spectroscopic ellipsometry based on dual compensator configuration. This technique is very powerful for measuring surface anisotropy in nano-scale, especially when materials show depolarization. Dual-rotating compensator configuration is adopted with the rotational ratio of 5:3 originally developed by Collins et al [1]. The instrument can provide 250-point spectra over the wavelength range from 230 nm to 820 nm in one irradiance waveform with minimum acquisition time of $Tc{\approx}10 s$. In this work, the results obtained in transmission modes are presented for the initial attempt. We present calibration procedures to diagnose the system from the utilize data collected in transmission mode without sample. We expect that the instrument will have important applications in thin films and surfaces that have anisotropy and inhomogeneity.

  • PDF

Ellipsometry 에서의 calibration 및 입사면 고정형 ellipsometer

  • 경재선;방경윤;최은호;손영수;안일신;오혜근
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.18-22
    • /
    • 2003
  • 일반사용자들은 ellipsometer를 사용이 어려운 장비로 인식하고 있다. 본 연구는 초보자들이 손쉽게 사용할 수 있는 ellipsometer를 제작하는데 목적이 있다. 시편을 측정하기 전에 반드시 해야 할 과정인 alignment와 calibration을 하지 않고 측정할 수 있도록 제작하였다. 기본 구조는 rotating compensator spectroscopic ellipsometry를 이용하였으며 , 입사각을 70도로 고정시키고 기존의 sample holder 구조를 바꾸어 어떠한 시편을 놓아도 입사면이 변하지 알게 하여 calibration 이 요구되지 않는 ellipsometer를 개발하였다. 장비의 성능과 정밀도를 검사하기 위하여 여러 가지 표준시료를 측정하여 일반 RCSE와 측정결과를 비교하였다. 또한 고정된 입사면의 calibration값의 신뢰도를 검사하기 위하여 반복적으로 측정할 때마다 시편을 재배치하여 실험하였다.

  • PDF

Wafer 반송용 End-Effector의 설계 및 파지력 제어에 관한 연구

  • 권오진;최성주;이우영;이강원
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.80-87
    • /
    • 2003
  • On this study, an End-Effector for the 300mm wafer transfer robot System is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor. It is controlled by microchip for the DC motor control. To design, relationships on the gripping force and the wafer deformation is analyzed by FEM analysis. Criterion on gripping force of a suggested End-Effector is confirmed as $255 ~ 274g_f$ from experimental results. From experimented results on repeatable position accuracy, gripping force and gripping cycle times in a wafer cleaning system, we confirmed that the suggested End-Effector is well satisfied on the required performance for 300mm wafer transfer robot system.

  • PDF

증착 온도를 변화시켜 DC magnetron sputter로 증착한 Ga-doped ZnO 박막의 특성

  • Park, Ji-Hyeon;Sin, Beom-Gi;Lee, Min-Jeong;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • Display 산업의 확대로 인해 광학적 특성 및 전기적 특성이 우수한 TCO (Transparent conductive oxide) 연구가 활발히 진행되고 있다. 기존에는 ITO가 대부분의 분야에서 이용되었지만 In의 경제적인 단점으로 인해 새로운 대체물로써 ZnO가 떠오르고 있다. ZnO는 전형적인 n-type 반도체이며, wide band gap 물질로써 Al, Ga, B과 같은 3 족 원소를 doping 함으로써 광학적 및 전기적 특성을 향상시킬 수 있다. 최근에는 ZnO의 이온반경과 비슷한 Ga을 도핑한 Ga-doped ZnO 박막에 대한 연구가 활발히 진행되고 있다. 이는 ZnO에 Ga을 도핑함으로써 격자결함을 최소화 시키고 carrier concentration 및 hall mobility를 향상시켜 전기전도도의 향상을 이루기 때문이다. 본 연구에서는 $Ga_2O_3$이 3wt% doping 된 ZnO rotating cylindrical target 을 DC magnetron sputtering 을 이용하여 2 kW의 파워와 70 kHz의 주파수를 고정하고, 증착 온도를 변화시켜 유리 기판 위에 Ga-doped ZnO 박막을 증착 하였다. 증착 시 온도가 Ga-doped ZnO 박막에 미치는 영향을 관찰하기 위해 박막 표면의 조성을 분석하였고, 결정성 및 전기적 특성의 변화를 통해 박막의 특성을 비교 평가하였다. Ga-doped ZnO 박막의 표면과 두께는 SEM (Scanning electron microscope) 분석을 통해 관찰하였고, XRD (X-ray diffractometer) 를 이용하여 결정학적 특성을 확인하였다. 또한 Van der Pauw 방법을 이용한 hall 측정을 통해 resistivity, carrier concentration, hall mobility를 분석하였고, UV-Vis를 이용하여 박막의 투과율을 분석하였으며, 이를 토대로 투명 전도막으로써 Ga-doped ZnO 박막의 응용 가능성을 평가하였다.

  • PDF

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

A Study on the Accelerated Life Test of BLDC Motor in Ceiling Mounted Digital Signage Rotating System (천정 거치형 디지털 사이니지 회전 시스템의 BLDC모터 가속수명시험에 관한 연구)

  • Kim, Ki-Hong;Kwon, Soon-Hong;Kwon, Soon-Gu;Park, Jong-Min;Kim, Jong-Soon;Jung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.141-147
    • /
    • 2018
  • In a time when product development cycles are getting shorter and shorter, many companies are making efforts to develop products with high reliability in a short period of time, accelerated life test is widely used as a method to quickly evaluate reliability. Accelerated life test reduces the test life or the life of the product from the observed data by shortening the lifetime of the product or abruptly lowering the performance under the worse condition than the actual condition in order to shorten the test cost or the test time. In this paper, BL3640A-06P+RB35, DC12V model, which is used in the support device of an automatic rotation type digital signage, which display various information such as textures and images on a display screen in a public place or a commercial space, BLDC motors were subjected to a constant stress test and at the rotational speed of 1rpm, $180^{\circ}$ rotation and reverse rotation under actual use conditions, the stress was imposed on the rotating speed of 2rpm and the weight of the actual installed product from 22.2kgf to 10kgf were installed. The lifetime of the actual use environment condition is 23,545 hours and the rotation speed is accelerated. The life time of the acceleration condition with the additional weight is 1,380 hours. The acceleration factor is calculated as 17.06, the one year guarantee test day is 235 days to 14 days, of the period from 470 days to 28 days, and the third year from 704 days to 42 days. The test date of the BLDC motor was tested on the shortened test date, and the rotational speed and the current value were measured. It is found that there is no defect even if it operates as the test date corresponding to the specified one year warranty period and the 3 year accelerated life test which is experimented. Using the statistical technique of the regression analysis the expected time for the motor to defect to #4 samples was 20 years.

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.