• Title/Summary/Keyword: root-soil model

Search Result 162, Processing Time 0.029 seconds

Development and performance analysis of a crawler-based driving platform for upland farming (밭 농업용 무한궤도 기반 주행 플랫폼 개발 및 성능 분석)

  • Taek Jin Kim;Hyeon Ho Jeon;Md Abu Ayub Siddique;Jang Young Choi;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.100-106
    • /
    • 2023
  • We developed a crawler-based driving platform that can perform harvesting, transportation, pest control, and rotary operation by equipping it with various implements, and analyzed its performance. This single platform was developed to perform as pepper harvester, peanut harvester, and transporter with a 46-kW engine. A simulation model was developed to study the specifications of the platform, and the accuracy was also analyzed. The absolute percentage error ranged from 0.2 to 5.9%, which made it possible to predict the platform performance using simulation model. In T-test, both torque and speed on field and asphalt showed a significant difference (1%). Driving torque required differed depending on the nature of the field, and the speeds also changed based on soil load. The developed platform has the advantage of being equipped with a variety of working tools, expected to be used to harvest root crops in the future.

Model for assessing the contamination of agricultural plants by accidentally released tritium (삼중수소 사고유출로 인한 농작물 오염 평가 모델)

  • Keum, Dong-Kwon;Lee, Han-Soo;Kang, Hee-Suk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • A dynamic compartment model was developed to appraise the level of the contamination of agricultural plants by accidentally released tritium from nuclear facility. The model consists of a set of inter-connected compartments representing atmosphere, soil and plant. In the model three categories of plant are considered: leafy vegetables, grain plants and tuber plants, of which each is modeled separately to account for the different transport pathways of tritium. The predictive accuracy of the model was tested through the analysis of the tritium exposure experiments for rice-plants. The predicted TFWT(tissue free water tritium) concentration of the rice ear at harvest was greatly affected by the absolute humidity of air, the ratio of root uptake, and the rate of rainfall, while its OBT(organically bound tritium) concentration the stowing period of the ear, the absolute humidity of air and the content of hydrogen in the organic phase. There was a good agreement between the model prediction and the experimental results lot the OBT concentration of the ear.

Analysis of Backscattering Coefficients of Corn Fields Using the First-Order Vector Radiative Transfer Technique (1차 Vector Radiative Transfer 기법을 이용한 옥수수 생육에 따른 후방산란 특성 분석)

  • Kweon, Soon-Koo;Hwang, Ji-Hwan;Park, Sin-Myeong;Hong, Sungwook;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, we analyzed the effect of corn growth on the radar backscattering coefficient. At first, we measured the backscattering coefficients of various corn fields using a polarimetric scatterometer system. The backscattering coefficients of the corn fields were also computed using the 1st-order VRT(Vector Radiative Transfer) model with field-measured input parameters. Then, we analyzed the experimental and numerical backscattering coefficients of corn fields. As a result, we found that the backscatter from an underlying soil layer is dominant for early growing stage. On the other hand, for vegetative stage with a higher LAI(Leaf-Area-Index), the backscatter from vegetation canopy becomes dominant, and its backscattering coefficients increase as incidence angle increases because of the effect of leaf angle distribution. It was also found that the estimated backscattering coefficients agree quite well with the field-measured radar backscattering coefficients with an RMSE(Root Mean Square Error) of 1.32 dB for VV-polarization and 0.99 dB for HH-polarization. Finally, we compared the backscattering characteristics of vegetation and soil layers with various LAI values.

The Relationship between Parameters of the SWAT Model and the Geomorphological Characteristics of a Watershed (SWAT 모형의 매개변수와 유역의 지형학적 특성 관계)

  • Lee, Woong Hee;Lee, Ji Haeng;Park, Ji Hun;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • The correlation relationships and their corresponding equations between the geomorphological parameters and the Soil Water Assessment Tool (SWAT) model parameters by Sequential Uncertainty Fitting - version 2 (SUFI-2) algorithm of SWAT Calibration and Uncertainty Programs (SWAT-CUP) were developed at the Seom-river experimental watershed. The parameters of the SWAT model at the Soksa-river experimental watershed were estimated by the developed equations. The SWAT model parameters were estimated by SUFI-2 algorithm of SWAT-CUP with rainfall-runoff data from the Soksa-river experimental watershed from 2000 to 2007. Rainfall-runoff simulation of the SWAT model was carried out at the Soksa-river experimental watershed from 2000 to 2007 for the applicability of the estimated parameters by the developed equations. The root mean square errors (RMSE) between the observed and the simulated rainfall-runoffs using the estimated parameters by developed equations of correlation analysis and the optimum parameters by SUFI-2 of SWAT-CUP were $1.09m^3/s$ and $0.93m^3/s$ respectively at the Soksa-river experimental watershed from 2000 to 2007. Therefore, it is considered that the parameter estimation of the SWAT model by the geomorphological characteristics parameters has applicability.

Estimation of Inflow into Namgang Dam according to Climate Change using SWAT Model (SWAT 모형을 이용한 기후변화에 따른 남강댐 유입량 추정)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.9-18
    • /
    • 2017
  • The objective of this study was to estimate the climate change impact on inflow to Namgang Dam using SWAT (Soil and Water Assessment Tool) model. The SWAT model was calibrated and validated using observed flow data from 2003 to 2014 for the study watershed. The $R^2$ (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. Calibration results showed that the annual mean inflow were within ${\pm}5%$ error compared to the observed. $R^2$ were ranged 0.61~0.87, RMSE were 1.37~7.00 mm/day, NSE were 0.47~0.83, and RMAE were 0.25~0.73 mm/day for daily runoff, respectively. Climate change scenarios were obtained from the HadGEM3-RA. The quantile mapping method was adopted to correct bias that is inherent in the climate change scenarios. Based on the climate change scenarios, calibrated SWAT model simulates the future inflow and evapotranspiration for the study watershed. The expected future inflow to Namgang dam using RCP 4.5 is increasing by 4.8 % and RCP 8.5 is increasing by 19.0 %, respectively. The expected future evapotranspiration for Namgang dam watershed using RCP 4.5 is decreasing by 6.7 % and RCP 8.5 is decreasing by 0.7 %, respectively.

Correlations Between the Physical Properties and Compression Index of KwangYang Clay (광양점토의 물리적 특성과 압축지수의 상관성)

  • Bae, Wooseok;Kim, Jongwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • The correlation equation empirically proposed to obtain compression indexes has been proposed to conveniently obtain the value using the soil parameter that can be obtained through simple tests when the number of time of consolidation testing is low or the distribution is large but most of the analyzed regions are limited to certain regions abroad or in the country and multiple data were integrated for use in many cases, thus it is not very reasonable to apply it. Therefore, to establish a new design method considering the uncertainty of the ground, it was selected the Kwangyang port area of which the data have been collected recently thus are relatively more reliable as the subject region of the study in order to maximally reduce the uncertainty of test data. After performing the verification of the normality of the consolidation test data obtained from the selected region and the transformation of variables, a prediction formula was proposed through the regression model with the transformed variables and the proposed regression model with transformed variables was compared with existing empirical equations to verify the suitability of the proposed model formula. After analyzing, it was confirmed that the coefficient of determination was increased after the Box-Cox variable transformation, thus the explanatory power was being enhanced and through the root-mean-square-error method, it was confirmed that the proposed model formula showed the most closed value to the test value.

  • PDF

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

Characteristics of Runoff on Urban Watershed in Jeju island, Korea (제주도 도심하천 유역의 유출특성 해석)

  • Jung, Woo-Yul;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.555-562
    • /
    • 2013
  • Jeju Island, the heaviest raining area in Korea, is a volcanic Island located at the southernmost of Korea, but most streams are of the dry due to its hydrological/geological characteristics different from those of inland areas. Therefore, there are limitations in applying the results from the mainland to the studies on stream run-off characteristics analysis and water resource analysis of Jeju Island. In this study, the SWAT(soil & water assessment tool) model is used for the Hwabuk stream watershed located east of the downtown to calculate the long-term stream run-off rate, and WMS(watershed modeling system) and HEC-HMS(hydrologic modeling system) models are used to figure out the stream run-off characteristics due to short-term heavy rainfall. As the result of SWAT modelling for the long-term rainfall-runoff model for Hwabuk stream watershed in 2008, 5.66% of the average precipitation of the entire basin was run off, with 3.47% in 2009, 8.12% in 2010, and root mean square error(RMSE) and determination coefficient($R^2$) was 496.9 and 0.87, respectively, with model efficient(ME) of 0.72. From the results of WMS and HEC-HMS models which are short-term rainfall-runoff models, unless there was a preceding rainfall, the runoff occurred only for rainfall of 40mm or greater, and the run-off duration averaged 10~14 hours.

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Effect of Different Levels of Applications of Illite on the Growth of Red Pepper (Capsicum annuum L.) in Bed Soil (상토에서 일라이트의 혼합비율에 따른 고추 육묘시 생육효과)

  • Lee, Seok-Eon;Kim, Hong-Ki;Kwon, Sang-Moon;Kim, Hee-Jung;Yoo, Ri-Bi;Baek, Ki-Tae;Lee, Moon-Soon;Woo, Sun-Hee;Park, Man;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.852-857
    • /
    • 2010
  • This study was performed to explore the effect of the clay mineral illite on the improvement of bed soil and plant growth. Red pepper (Capsicum annuum L.) was used as a model vegetable crop. The experiment was performed during the whole six weeks in the glass house of the Chungbuk National University. Its seedlings were cultivated in the bed soil normally used for horticultural purpose. Of the seedlings cultured, the healthy and regular size of seed were selected and cultivated in the pots. They were treated with two forms of illite, particulate (PA) and powder (PW), at the following application rates: standard application[P1 (PA1, PW1), 1:20 (w/w)], two times[P2 (PA2, PW2), 1:10 (w/w)], and four times[P4 (PA4, PW4), 1:5 (w/w)] of standard application. Untreatment (P0) was used as a control pot. At six weeks of cultivation, their growth lengths were correspondingly increased as the application rate was increased ranging from P0, P1, P2, and to P4. Their growth length was a little greater on the application of powder illite (PW) than on the particulate illite (PA). Based on the plant analysis for the root, leaf, stem of red pepper, the uptake amounts of K, Ca, and Mg, were correspondingly increased, as the application rate was increased ranging from P0, P1, P2, and to P4, respectively. At the same application rate, their amounts taken up in the respective parts were higher on the application of PW illite than on the PA one. Especially the amounts of Ca and Mg were higher in the stem, leaf than root. Consequently, it appears that the illite treatment, especially, PW form of illite, enhance the growth of red pepper in the glass house during the whole six weeks of experiment.