• 제목/요약/키워드: root mean square prediction error

검색결과 336건 처리시간 0.027초

Weibull 분포 모형을 이용한 굴참나무 임분 재적 및 탄소저장량 추정 (Prediction of Stand Volume and Carbon Stock for Quercus variabilis Using Weibull Distribution Model)

  • 손영모;표정기;김소원;이경학
    • 한국산림과학회지
    • /
    • 제101권4호
    • /
    • pp.599-605
    • /
    • 2012
  • 본 연구의 목적은 굴참나무 임분의 직경분포와 ha당 재적 및 탄소량을 추정하는데 있다. 영급과 임분구조를 고려하여 굴참나무 임분에서 354개소를 조사하고 시료를 수집하였다. 임령에 따른 직경분포를 파악하기 위하여 Weibull 모형을 사용하였으며 모수의 추정은 단순적률법(Simplified method-of-moments)을 이용하였다. 사용된 자료 중에서 80%는 모형개발에 사용하였고, 나머지 20%는 개발된 모형의 검정에 사용하였다. 모형의 검정에는 적합도지수(Fitness Index)와 평균오차제곱(Root Mean Square Error), Kolmogorov-Smirnov 통계치가 이용되었다. 검정자료에서 추정된 지위지수, 수고, 재적식의 적합도지수는 각각 0.967, 0.727, 0.988이고 평균오차제곱은 2.763, 1.817, 0.007이며, Weibull 모형의 Kolmogorov-Smirnov 적합도는 75%를 나타내었다. 본 연구를 통해 개발된 모형에서 50년생의 굴참나무임분이 14의 지위지수와 697본의 분수를 나타내는 경우, 재적은 $188.69m^3/ha$이고 지상부 탄소량은 90.30 tC/ha으로 추정되었다. 본 연구의 결과는 활엽수 수종에 대한 생장정보의 제공이 가능하고 굴참나무 탄소량 추정에 활용이 가능하다.

태양광 발전 예보를 위한 UM-LDAPS 예보 모형 성능평가 (Evaluation of UM-LDAPS Prediction Model for Daily Ahead Forecast of Solar Power Generation)

  • 김창기;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.71-80
    • /
    • 2019
  • Daily ahead forecast is necessary for the electricity balance between load and supply due to the variability renewable energy. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for more than 12 hours forecast horizon. UM-LDAPS model is the numerical weather prediction operated by Korea Meteorological Administration and it generates the 36 hours forecast of hourly total irradiance 4 times a day. This study attempts to evaluate the model performance against the in situ measurements at 37 ground stations from January to May, 2013. Relative mean bias error, mean absolute error and root mean square error of hourly total irradiance are averaged over all ground stations as being 8.2%, 21.2% and 29.6%, respectively. The behavior of mean bias error appears to be different; positively largest in Chupoongnyeong station but negatively largest in Daegu station. The distinct contrast might be attributed to the limitation of microphysics parameterization for thick and thin clouds in the model.

Prediction of fly ash concrete compressive strengths using soft computing techniques

  • Ramachandra, Rajeshwari;Mandal, Sukomal
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.83-94
    • /
    • 2020
  • The use of fly ash in modern-day concrete technology aiming sustainable constructions is on rapid rise. Fly ash, a spinoff from coal calcined thermal power plants with pozzolanic properties is used for cement replacement in concrete. Fly ash concrete is cost effective, which modifies and improves the fresh and hardened properties of concrete and additionally addresses the disposal and storage issues of fly ash. Soft computing techniques have gained attention in the civil engineering field which addresses the drawbacks of classical experimental and computational methods of determining the concrete compressive strength with varying percentages of fly ash. In this study, models based on soft computing techniques employed for the prediction of the compressive strengths of fly ash concrete are collected from literature. They are classified in a categorical way of concrete strengths such as control concrete, high strength concrete, high performance concrete, self-compacting concrete, and other concretes pertaining to the soft computing techniques usage. The performance of models in terms of statistical measures such as mean square error, root mean square error, coefficient of correlation, etc. has shown that soft computing techniques have potential applications for predicting the fly ash concrete compressive strengths.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구 (A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network)

  • 강현우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권8호
    • /
    • pp.393-400
    • /
    • 2016
  • 최근, 컴퓨터 비전과 기계 학습 기술의 도움을 받아 효율적이고 자동적인 도시 환경에 대한 분석 방법의 개발에 대한 연구가 이루어지고 있다. 많은 분석들 중에서도 도시의 안전도 분석은 지역 사회의 많은 관심을 받고 있다. 더욱 정확한 안전도 점수 예측과 인간의 시각적 인지를 반영하기 위해서, 인간의 시각적 인지에서 가장 중요한 전역 정보와 지역 정보의 고려가 필요하다. 이를 위해 우리는 전역 칼럼과 지역 칼럼으로 구성된 Double-column Convolutional Neural Network를 사용한다. 전역 칼럼과 지역 칼럼 각각은 입력은 크기가 변환된 원 영상과 원 영상에서 무작위로 크로핑을 사용한다. 또한, 학습 과정에서 특정 칼럼에 오버피팅되는 문제를 해결하기 위한 새로운 학습방법을 제안한다. 우리의 DCNN 모델의 성능 비교를 위해 2개의 SVR 모델과 3개의 CNN 모델의 평균 제곱근 오차와 상관관계 분석을 측정하였다. 성능 비교 실험 결과 우리의 모델이 0.7432의 평균 제곱근 오차와 0.853/0.840 피어슨/스피어맨 상관 계수로 가장 좋은 성능을 보여주었다.

데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측 (Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House)

  • 최락영;채영현;이세연;박진선;홍세운
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.73-80
    • /
    • 2024
  • 본 연구는 토픽 모델링과 장단기 기억(LSTM) 신경망을 결합하여 한국 종합주가지수(KOSPI) 예측의 정확도를 향상하는 방법을 제안한다. 본 논문에서는 LDA(Latent Dirichlet Allocation) 기법을 이용해 금융 뉴스 데이터에서 금리 인상 및 인하와 관련된 10개의 주요 주제를 추출하고, 추출된 주제를 과거 KOSPI 지수와 함께 LSTM 모델에 입력하여 KOSPI 지수를 예측하는 모델을 제안한다. 제안된 모델은 과거 KOSPI 지수를 LSTM 모델에 입력하여 시계열 예측 방법과 뉴스 데이터를 입력하여 토픽 모델링하는 방법을 결합하여 KOSPI 지수를 예측하는 특성을 가진다. 제안된 모델의 성능을 검증하기 위해, 본 논문에서는 LSTM의 입력 데이터의 종류에 따라 4개의 모델(LSTM_K 모델, LSTM_KNS 모델, LDA_K 모델, LDA_KNS 모델)을 설계하고 각 모델의 예측 성능을 제시하였다. 예측 성능을 비교한 결과, 금융 뉴스 주제 데이터와 과거 KOSPI 지수 데이터를 입력으로 하는 LSTM 모델(LDA_K 모델)이 가장 낮은 RMSE(Root Mean Square Error)를 기록하여 가장 좋은 예측 성능을 보였다.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

Wine Quality Prediction by Using Backward Elimination Based on XGBoosting Algorithm

  • Umer Zukaib;Mir Hassan;Tariq Khan;Shoaib Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.31-42
    • /
    • 2024
  • Different industries mostly rely on quality certification for promoting their products or brands. Although getting quality certification, specifically by human experts is a tough job to do. But the field of machine learning play a vital role in every aspect of life, if we talk about quality certification, machine learning is having a lot of applications concerning, assigning and assessing quality certifications to different products on a macro level. Like other brands, wine is also having different brands. In order to ensure the quality of wine, machine learning plays an important role. In this research, we use two datasets that are publicly available on the "UC Irvine machine learning repository", for predicting the wine quality. Datasets that we have opted for our experimental research study were comprised of white wine and red wine datasets, there are 1599 records for red wine and 4898 records for white wine datasets. The research study was twofold. First, we have used a technique called backward elimination in order to find out the dependency of the dependent variable on the independent variable and predict the dependent variable, the technique is useful for predicting which independent variable has maximum probability for improving the wine quality. Second, we used a robust machine learning algorithm known as "XGBoost" for efficient prediction of wine quality. We evaluate our model on the basis of error measures, root mean square error, mean absolute error, R2 error and mean square error. We have compared the results generated by "XGBoost" with the other state-of-the-art machine learning techniques, experimental results have showed, "XGBoost" outperform as compared to other state of the art machine learning techniques.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.