• 제목/요약/키워드: root isolates

검색결과 219건 처리시간 0.028초

Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

  • Fan, Ze-Yan;Miao, Cui-Ping;Qiao, Xin-Guo;Zheng, You-Kun;Chen, Hua-Hong;Chen, You-Wei;Xu, Li-Hua;Zhao, Li-Xing;Guan, Hui-Lin
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.97-104
    • /
    • 2016
  • Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

Severe Root Rot on Hydroponically-Grown Lettuce Caused by Phytophthora drechsleri

  • Jee, Hyeong-Jin;Nam, Ki-Woong;Cho, Weon-Dae
    • The Plant Pathology Journal
    • /
    • 제17권5호
    • /
    • pp.311-314
    • /
    • 2001
  • Phytophthora root rot of lettuce, which has not been reported in Korea before, occurred severely in liquid hydroponic culture. The disease occurred in all seasons and was most severe in summer from June to August, showing over 90% infection rate in some farms. A total of 51 isolates collected from various farms were all identified as Phytophthora drechsleri. The fungus showed strong pathogenicity to lettuce and Chinese cabbage, moderate pathogenicity to cucurbits and tomato, and weak pathogenicity to pepper. However, the fungus was not pathogenic to other leafy vegetables namely: chicory, kale, endive, garland chrysanthemum, spinach beet, and perilla. Among 10 species of Phytophtora inoculated to lettuce, only P. drechsleri and P. cryptogea were found pathogenic.

  • PDF

Colletotrichum coccodes에 의한 가지 검은점뿌리썩음병(흑점근부병) (Black Dot Root Rot of Eggplant Caused by Colletotrichum coccodes)

  • 김완규;조원대
    • 한국균학회지
    • /
    • 제25권1호통권80호
    • /
    • pp.6-9
    • /
    • 1997
  • 1993년 5월, 국내 여주지역의 비닐하우스포장에서 가지점뿌리썩음병이 처음 발견되었다. 이 병의 병원 진균은 형태적 및 배양적 특성에 의해 Colletotrichum coccodes (Wallr.) Mushes로 동정되었다. 이 균의 균주들을 사용하여 병원성검정을 실시한 결과, 병원성이 확인되었다.

  • PDF

Bacillus subtilis YB-70 as a Biocontrol Agent of Fusarium solani causing Plant Root-Rot

  • KIM, YONG-SU;HO-SEONG LIM;SANG-DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.68-74
    • /
    • 1994
  • A bacterial strain YB-70 which has powerful biocontrol activity against Fusarium solani causing plant root-rot resulting in considerable losses of many economical crops was isolated and selected from over 500 isolates from a ginseng rhizosphere in suppressive soil, and identified as a strain of Bacillus subtilis. In several biochemical and in vitro antibiosis tests on F. solani with culture filterates from B. subtilis YB-70, our data strongly indicated metabolites which mediated inhibition of the fungal growth were presumed to be heat-stable, micromolecular, and ethyl alcohol solutable antifungal substances. Suppression of root-rot by B. subtilis YB-70 was demonstrated in pot trials with eggplant (Solanum melongena L) seedlings. Treatment of the seedling with the bacterial suspension (1.7~1.9$\times$$10^5$ CFU/g) in F. solani-infested soil significantly reduced disease incidences by 68 to 76% after 25 to 30 days. The results supported that B. subtilis YB-70 have excellent potentials as a biocontrol agent.

  • PDF

벼(Oryza sativa L.)의 잎 면으로부터의 IAA를 생성하는 Methylotrophic Bacteria의 분리 선별 및 특성 비교 (Isolation and Characterization of the IAA Producing Methylotrophic Bacteria from Phyllosphere of Rice Cultivars(Oryza sativa L.))

  • 이규회;;김충우;이형석;;사동민
    • 한국토양비료학회지
    • /
    • 제37권4호
    • /
    • pp.235-244
    • /
    • 2004
  • 국내 3지역으로부터 수집한 19종의 벼 잎에 서식하는 methylo-trophlc bacteria의 군집성을 비교하였다. Methanol에 따른 특징적인 생장을 나타내는 분홍색 색소를 띤 19개의 균체를 분리하였다. 분리된 이들 균체들은 Bergey의 방법에 따라 각각 생리, 생화학적 특성들을 조사 하였으며, 표현형들은 37가지의 특성들을 계통분석법을 통해 명찰히 구분하여, 최종 별개의 4군(cluster)으로 분리하였다. 대조균주인 M, extor벼둔 AM1과 M. fujisawaense KACC10744는 각각 IV군과 III군에 속해있다. I군에 속해있는 균체들은 nitrate의 환원을 근거로 하여 구분하였으며, 4개의 분리균주는 NaCl 0.5M 농도까지 염에 대한 내성을 보였다. I군과 III군의 균체들은 탄소원으로 methane을 이용하는 특성을 가졌으며, 4군의 대부분의 균체들은 탄소원으로 단당류, 이당류, 다당류를 이용하였다. L-tryptophan의 존재 하에 모든 균체들의 indole-3-acetlc aclu (IAA) 생성 실험에서는 선별균체 중 8균체만이 IAA를 생성하였다. 게다가 배지의 질소원은 IAA의 생성에 영향을 미치는 것으로 관찰되었으며, 질소원으로 $(NH_4)_2SO_4$를 이용하였을 때 IAA 생성은 최대 20-30배까지 증가하였으나 $KNO_3$, $NH_4NO_3$ 그리고 $NH_4$ CI을 질소원으로 사용하였을 때에는 IAA 생성에 큰 영향을 미치지 않았다. 선별된 methylo trophic bacteria를 뿌리에 접종한 결과 균체가 생성한 IAA 영향으로 식물체의 뿌리와 줄기의 길이 그리고 곁뿌리의 수가 상당히 증가하였으며, 균주를 접종한 벼 종자의 초기 뿌리 생장은 균을 접종하지 않은 종자보다 평균 27-56% 증가하였다. 높은 농도의 IAA ($400{\mu}g\;mL^{-1}$)를 처리했을 때는 오히려 뿌리의 생장을 억제 시켰으나, $10-200{\mu}g\;mL^{-1}$ 농도의 IAA를 처리했을 때는 뿌리 생장을 촉진시켰다. 이러한 결과는 박테리아가 생산하는 IAA가 식물 뿌리생장에 중요한 역할을 한다는 것을 의미한다.

Different Structural Modifications Associated with Development of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Kim, Jeong-Ho;Kim, Sang-Gyu;Kim, Mi-Sook;Jeon, Yong-Ho;Cho, Dae-Hui;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2009
  • Root rot caused by Cylindrocarpon destructans is one of the most important diseases of ginseng (Panax ginseng C. A. Meyer). Two types of symptoms found in ginseng root rot are black root rot and rusty root (rusty spots), in which disease severities are high and low, respectively. Symptom development and related histopathological changes were examined in an inoculation test on 2-year-old ginseng roots using virulent (Cy9801) and avirulent (Cy0001) isolates of C. destructans under different temperature conditions (13, 18, 23, and $28^{\circ}C$). Black root rot was only induced by Cy9801 in the lower temperature range (13, 18, and $23^{\circ}C$) and not at the higher temperature ($28^{\circ}C$). No black root rot, but only rusty spot symptoms, were induced by Cy0001 at all temperatures tested except $13^{\circ}C$, at which no symptoms occurred on over half of inoculation sites, suggesting disease development was influenced by pathogen virulence and temperature. Wound periderms were formed in all root tissues with rust spot symptoms at $28^{\circ}C$ caused by Cy9801 and at 18, 23, and $28^{\circ}C$ temperatures caused by Cy0001. No wound periderm was formed at $13^{\circ}C$ by either Cy9801 or Cy0001. Light microscopy revealed that the wound periderm was formed by initial cell divisions in cell wall formation and/or additional cell wall layering in parenchyma cells without obvious nuclear division, followed by layering of the divided cells adjacent to the inoculation sites, blocking the spread of the rot. These results suggest that disease development declined at lower temperatures and by the formation of a wound periderm at higher temperatures, and that ginseng rusty root may develop under conditions unfavorable for further disease development of C. destructans.

인삼의 적변을 유발하는 세균에 대하여 항균활성을 가지는 방선균 선발 및 동정 (Screening and Identification of Antibacterial Actinomycetes against Bacteria Causing Rusty Root on Ginseng)

  • 한성희;류동걸;최승현;최재을;안길환
    • 농업과학연구
    • /
    • 제37권2호
    • /
    • pp.255-260
    • /
    • 2010
  • Rusty root, the browning disease on ginseng, decreases quality and value. Recent studies indicated that endophytic bacteria could be a possible cause of rusty root. Actinomycetes antagonistic to the rusty-root-causing bacteria were isolated from soil. Twenty nine out of 932-isolates of Actinomycetes from soil showed antibacterial activity against Agrobacterium tumefaciens and Pseudomonas veronii an endophytic isolate in ginseng. The strongest antibacterial strain(ATO4O104) was classified based on 16S rDNA sequence. The Actinomycetes strain, ATO4O104, isolated in soil of USA volcano national park was identified as Streptomyces adephospholyticus. To test plant toxicity, radish seeds were sprouted with the culture of S. adephospholyticus and it did not show any harmful effect. The butanol partition out of n-hexane, ethyl acetate, butanol, and water partions showed the highest antibacterial activity.

인삼근부(人蔘根腐) 병원균(病原菌), Fusarium solani 및 Cylindrocarpon destructans에 길항적(拮抗的)인 Streptomyces species의 분류동정(分類同定) (Identification of Streptomyces species antagonistic to Fusarium solani or Cylindrocarpon destructans causing ginseng root rots)

  • 심재욱;이민웅
    • 한국균학회지
    • /
    • 제19권1호
    • /
    • pp.66-73
    • /
    • 1991
  • 인삼병원균(人蔘病原菌) 억제토양(抑制土壤)으로부터 110종(種)의 방선균(放線菌)을 분리(分離)하여 인삼근부(人蔘根腐) 병원균(病原菌)인 Fusarium solani와 Cylindrocapon destructans에 길항효과(拮抗?果)를 나타내는 3종(種)의 방선균(放線菌)이 형태적 배양적 생리적인 특정에 의거하여 각각 분류동정(分類同定)되었다. 포자사슬의 모양은 강화 6-2(K 6-2) 가 감긴형태 (Spira)였고, 서울 2-1(S 2-1)은 고리형태(Retinaculum-apertum)였으며, 양주 2-2(Y 2-2)는 꾸불꾸불한 형태(Rectus-flexibi-lis)였다. 포자벽 표면의 모양은 강화 6-2(K 6-2)에 서는 바늘모양의 형태(Spiny)인 반면, 서울 2-lCS 2- 1)과 양주 2-2(Y 2-2)에서는 모두 매끄러운 형태(Smooth)였으며, 기생균사체의 색깔은 모두 회색(灰色)계통이었다. 따라서, 강화 6-2(K 6-2), 서울2-lCS 2- 1), 양주 2-2(Y 2-2)는 Streptomyces variabilis, Stre-ptomyces virginiae, Streptomyces griseolus로 각각 분류동정(分類同定)되었다 .

  • PDF

Pathological Interrelations of Soil-Borne Diseases in Cucurbits Caused by Fusarium Species and Meloidogyne incognita

  • Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.410-423
    • /
    • 2017
  • Pathological interrelations of two soil-borne diseases in cucurbits (watermelon, oriental melon, shintosa and cucumber) caused by Fusarium isolates (FI) and the root-knot nematode (RKN), Meloidogyne incognita were characterized by the fusarium disease severity index (DI), RKN gall index (GI) and eggmass index (EI) in inoculation tests using FI and RKN. Virulence of FI as determined by DI at 4 weeks after inoculation was mostly in the higher order of Fusarium proliferatum F6, F5 and Fusarium oxysporum f. sp. melonis or Fusarium oxysporum f. sp. niveum with no significant differential interactions among the cucurbits and RKN co-infection. Significant increases of DI due to RKN coinfection were noticed in watermelon and oriental melon infected with F. proliferatum isolates, suggesting the DI increase due to RKN coinfection may depend upon the virulence of FI relative to aggressiveness of RKN on the cucurbits. For the coinfection of FI and RKN, GI and EI were mostly reduced logarithmically with the increase of DI, largely more in EI than GI, in all cucurbits except for shintosa. Microscopic examination of the root tissues showed histopathological features characteristic to infection types; formation of fungal hyphae and/or spores and plant defense structures (tyloses and mucilage) in variable degrees and formation of giant cells at variable developmental stages and with variable cytoplasmic depletion or degeneration which were visualized in relations with the values of DI, GI and EI. These findings will be helpful to develop control strategies of the soil-borne disease complex based on their pathological characteristics.

Identification of New Isolates of Phytophthora sojae and Selection of Resistant Soybean Genotypes

  • Su Vin Heo;Hye Rang Park;Yun Woo Jang;Jihee Park;Beom Kyu Kang;Jeong Hyun Seo;Jun Hoi Kim;Ji Yoon Lee;Man Soo Choi;Jee Yeon Ko;Choon Song Kim;Sungwoo Lee;Tae-Hwan Jun
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.329-335
    • /
    • 2024
  • Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, can occur at any growth stage under poorly drained and humid conditions. The expansion of soybean cultivation in South Korean paddy fields has increased the frequency of PRR outbreaks. This study aimed to identify four P. sojae isolates newly collected from domestic fields and evaluate race-specific resistance using the hypocotyl inoculation technique. The four isolates exhibited various pathotypes, with GJ3053 exhibiting the highest virulence complexity. Two isolates, GJ3053 and AD3617, were screened from 205 soybeans, and 182 and 190 genotypes (88.8 and 92.7%, respectively) were susceptible to each isolate. Among these accessions, five genotypes resistant to both isolates were selected. These promising genotypes are candidates for the development of resistant soybean cultivars that can effectively control PRR through gene stacking.