DOI QR코드

DOI QR Code

Identification of New Isolates of Phytophthora sojae and Selection of Resistant Soybean Genotypes

  • Su Vin Heo (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Hye Rang Park (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Yun Woo Jang (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jihee Park (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Beom Kyu Kang (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong Hyun Seo (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jun Hoi Kim (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Ji Yoon Lee (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Man Soo Choi (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jee Yeon Ko (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Choon Song Kim (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Sungwoo Lee (Department of Crop Science, Chungnam National University) ;
  • Tae-Hwan Jun (Department of Plant Bioscience, Pusan National University)
  • Received : 2023.12.31
  • Accepted : 2024.03.25
  • Published : 2024.06.01

Abstract

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, can occur at any growth stage under poorly drained and humid conditions. The expansion of soybean cultivation in South Korean paddy fields has increased the frequency of PRR outbreaks. This study aimed to identify four P. sojae isolates newly collected from domestic fields and evaluate race-specific resistance using the hypocotyl inoculation technique. The four isolates exhibited various pathotypes, with GJ3053 exhibiting the highest virulence complexity. Two isolates, GJ3053 and AD3617, were screened from 205 soybeans, and 182 and 190 genotypes (88.8 and 92.7%, respectively) were susceptible to each isolate. Among these accessions, five genotypes resistant to both isolates were selected. These promising genotypes are candidates for the development of resistant soybean cultivars that can effectively control PRR through gene stacking.

Keywords

Acknowledgement

This study was supported by the project "Development of elite line and analysis of related genes for soybean root-rot disease resistance, Project No. PJ015762012023)" of the National Institute of Crop Science, RDA, South Korea.

References

  1. Anderson, T. R. and Buzzell, R. I. 1992. Inheritance and linkage of the Rps7 gene for resistance to Phytophthora rot of soybean. Plant Dis. 76:958-959. https://doi.org/10.1094/PD-76-0958
  2. Baek, I.-Y., Han, W.-Y., Kang, S.-T., Shin, D.-C., Choung, M.-G., Oh, S.-K., Shin, S.-O., Suh, D.-Y. and Kim, S.-C. 2004. A new black soybean cultivar "Cheongja 2" with green cotyledon, early maturity and high anthocyanin. Korean J. Breed. Sci. 36:385-386.
  3. Bernard, R. L., Smith, P. E., Kaufmann, M. J. and Schmitthenner, A. F. 1957. Inheritance of resistance to Phytophthora root and stem rot in the soybean. Agron. J. 49:391.
  4. Bernard, R. L. and Cremeens, C. R. 1981. An allele at the Rps1 locus from the variety 'Kingwa'. Soybean Genet. Newsl. 8:40-42.
  5. Bienapfl, J. C., Malvick, D. K. and Percich, J. A. 2011. Specific molecular detection of Phytophthora sojae using conventional and real-time PCR. Fungal Biol. 115:733-740. https://doi.org/10.1016/j.funbio.2011.05.007
  6. Bradley, C. A., Allen, T. W., Sisson, A. J., Bergstrom, G. C., Bissonnette, K. M., Bond, J., Byamukama, E., Chilvers, M. I., Collins, A. A., Damicone, J. P., Dorrance, A. E., Dufault, N. S., Esker, P. D., Faske, T. R., Fiorellino, N. M., Giesler, L. J., Hartman, G. L., Hollier, C. A., Isakeit, T., Jackson-Ziems, T. A., Jardine, D. J., Kelly, H. M., Kemerait, R. C., Kleczewski, N. M., Koehler, A. M., Kratochvil, R. J., Kurle, J. E., Malvick, D. K., Markell, S. G., Mathew, F. M., Mehl, H. L., Mehl, K. M., Mueller, D. S., Mueller, J. D., Nelson, B. D., Overstreet, C., Padgett, G. B., Price, P. P., Sikora, E. J., Small, I., Smith, D. L., Spurlock, T. N., Tande, C. A., Telenko, D. E. P., Tenuta, A. U., Thiessen, L. D., Warner, F., Wiebold, W. J. and Wise, K. A. 2021. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Prog. 22:483-495. https://doi.org/10.1094/PHP-01-21-0013-RS
  7. Buzzell, R. I. and Anderson, T. R. 1992. Inheritance and race reaction of a new soybean Rps1 allele. Plant Dis. 76:600-601. https://doi.org/10.1094/PD-76-0600
  8. Cerritos-Garcia, D. G., Huang, S.-Y., Kleczewski, N. M. and Mideros, S. X. 2023. Virulence, aggressiveness, and fungicide sensitivity of Phytophthora spp. associated with soybean in Illinois. Plant Dis. 107:1785-1793. https://doi.org/10.1094/PDIS-07-22-1551-RE
  9. Chandra, S., Choudhary, M., Bagaria, P. K., Nataraj, V., Kumawat, G., Choudhary, J. R., Sonah, H., Gupta, S., Wani, S. H. and Ratnaparkhe, M. B. 2022. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean (Glycine max L.). Front. Genet. 13:939182.
  10. Dorrance, A. E., Berry, S. A., Anderson, T. R. and Meharg, C. 2008. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog. Online publication. https://doi.org/10.1094/php2008-0118-01-DG.
  11. Dorrance, A. E., Jia, H. and Abney, T. S. 2004. Evaluation of soybean differentials for their interaction with Phytophthora sojae. Plant Health Prog. Online publication. https://doi.org/10.1094/ PHP-2004-0309-01-RS.
  12. Dorrance, A. E., Mills, D., Robertson, A. E., Draper, M. A., Giesler, L. and Tenuta, A. 2007. Phytophthora root and stem rot of soybean. Plant Health Instr. Online publication. https://doi.org/10.1094/PHI-I-2007-0830-07.
  13. Gordon, S. G., Martin, S. K. S. and Dorrance, A. E. 2006. Rps8 maps to a resistance gene rich region on soybean molecular linkage group F. Crop Sci. 46:168-173. https://doi.org/10.2135/cropsci2004.04-0024
  14. Han, W.-Y., Kim, H.-T., Ko, J.-M., Yun, H.-T., Baek, I., Lee, B.-W., Lee, Y.-H., Ha, T.-J., Shin, S.-O., Lee, S.-K., Jung, C.-S., Choi, J.-K., Lee, J.-H., Lee, S.-S., Kim, D.-K., Lee, E.-J. and Kang, H.-W. 2016. A new soybean variety, 'Joongmo 3009' with green cotyledon, black seed coat, disease tolerant, and high yield. Korean J. Breed. Sci. 48:54-59. https://doi.org/10.9787/KJBS.2016.48.1.054
  15. Jang, I.-H., Kang, I. J., Kim, J.-M., Kang, S.-T., Jang, Y. E. and Lee, S. 2020a. Genetic mapping of a resistance locus to Phytophthora sojae in the Korean soybean cultivar Daewon. Plant Pathol. J. 36:591-599. https://doi.org/10.5423/PPJ.OA.09.2020.0173
  16. Jang, I.-H. and Lee, S. 2020. A review and perspective on soybean (Glycine max L.) breeding for the resistance to Phytophthora sojae in Korea. Plant Breed. Biotechnol. 8:114-130. https://doi.org/10.9787/PBB.2020.8.2.114
  17. Jang, Y. E., Jang, I. H., Kang, I. J., Kim, J.-M., Kang, S.-T. and Lee, S. 2020b. Two isolate-specific resistance loci for Phytophthora sojae in the soybean Socheong2. Korean J. Breed. Sci. 52:398-407. https://doi.org/10.9787/KJBS.2020.52.4.398
  18. Jee, H. J., Kim, W. G. and Cho, W. D. 1998. Occurrence of Phytophthora root rot on soybean (Glycine max) and identification of the causal fungus. RDA J. Crop Prot. 40:16-22.
  19. Kang, I. J., Kang, S., Jang, I. H., Jang, Y. W., Shim, H. K., Heu, S. and Lee, S. 2019. Identification of new isolates of Phytophthora sojae and the reactions of Korean soybean cultivars following hypocotyl inoculation. Plant Pathol. J. 35:698-704. https://doi.org/10.5423/PPJ.NT.09.2019.0249
  20. Kaufmann, M. J. and Gerdemann, J. W. 1958. Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology 48:201-208.
  21. Kilen, T. C., Hartwig, E. E. and Keeling, B. L. 1974. Inheritance of a second major gene for resistance to Phytophthora rot in soybeans. Crop Sci. 14:260-262. https://doi.org/10.2135/cropsci1974.0011183X001400020027x
  22. McCoy, A. G., Belanger, R. R., Bradley, C. A., Cerritos-Garcia, D. G., Garnica, V. C., Giesler, L. J., Grijalba, P. E., Guillin, E., Henriquez, M. A., Kim, Y. M., Malvick, D. K., Matthiesen, R. L., Mideros, S. X., Noel, Z. A., Robertson, A. E., Roth, M. G., Schmidt, C. L., Smith, D. L., Sparks, A. H., Telenko, D. E. P., Tremblay, V., Wally, O. and Chilvers, M. I. 2023. A global-temporal analysis on Phytophthora sojae resistance-gene efficacy. Nat. Comun. 14:6043.
  23. Mueller, E. H., Athow, K. L. and Laviolette, F. A. 1978. Inheritance of resistance to four physiologic races of Phytophthora megasperma var. sojae. Phytopathology 68:1318-1322. https://doi.org/10.1094/Phyto-68-1318
  24. Ploper, L. D., Athow, K. L. and Laviolette, F. A. 1985. A new allele at Rps3 locus for resistance to Phytophthora magasperma f. sp. glycinea in soybean. Phytopathology 75:690-694. https://doi.org/10.1094/Phyto-75-690
  25. Sandhu, D., Schallock, K. G., Rivera-Velez, N., Lundeen, P., Cianzio, S. and Bhattacharyya, M. K. 2005. Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. J. Hered. 96:536-541. https://doi.org/10.1093/jhered/esi081
  26. Schmitthenner, A. F. 1985. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 69:362-368. https://doi.org/10.1094/PD-69-362
  27. Seo, J. H., Han, W. Y., Baek, I. Y., Kim, H. S., Kim, H. T., Kang, B. K., Ko, J. M., Yun, H. T., Lee, B. W., Oh, J. H., Shin, S. O. and Kwak, D. Y. 2020. Lodging and pod shattering tolerance of large-seeded black soybean cultivar 'Taecheong'. Korean J. Breed. Sci. 52:426-432. https://doi.org/10.9787/KJBS.2020.52.4.426
  28. Statistics Korea. 2023. Pulse production. In: Crop production survey. URL https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0025&conn_path=I2&language=en [15 November 2023].
  29. Sugimoto, T., Kato, M., Yoshida, S., Matsumoto, I., Kobayashi, T., Kaga, A., Hajika, M., Yamamoto, R., Watanabe, K., Aino, M., Matoh, T., Walker, D. R., Biggs, A. R. and Ishimoto, M. 2012. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed. Sci. 61:511-522. https://doi.org/10.1270/jsbbs.61.511
  30. You, H. J., Kang, E. J., Kang, I. J., Kim, J.-M., Kang, S.-T. and Lee, S. 2023a. Identification of a locus associated with resistance to Phytophthora sojae in the soybean elite line 'Cheonal'. Korean J. Crop Sci. 68:134-146.
  31. You, H. J., Shim, K.-C., Kang, I.-J., Kim, J.-M., Kang, S. and Lee, S. 2023b. Soybean variety Saedanbaek confers a new resistance allele to Phytophthora sojae. Plants 12:3957.
  32. Zhong, C., Li, Y., Sun, S., Duan, C. and Zhu, Z. 2019. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean. Int. J. Mol. Sci. 20:1809.
  33. Zhu, S., Li, Y., Vossen, J. H., Visser, R. G. F. and Jacobsen, E. 2012. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 21:89-99. https://doi.org/10.1007/s11248-011-9510-1