• Title/Summary/Keyword: root growth rate

Search Result 1,002, Processing Time 0.033 seconds

Cutting Propagation and Seedling Growth Effect According to Fertilizer Application of Elsholtzia minima Nakai (좀향유의 삽목 증식 및 시비에 따른 유묘의 생장 효과)

  • Kim, Tae-Keun;Kim, Hyoun-Chol;Song, Jin-Young;Lee, Hee-Seon;Ko, Seok-Hyung;Lee, You-mi;Song, Chang-Khil
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.243-252
    • /
    • 2015
  • This study was performed to establish a production system for in situ and ex situ conservation of Elsholtzia minima Nakai, an endemic plant grown in Jeju Island. Moreover, this study aimed to identify root-growth characteristics according to the use of pre-treatment agents and seedling growth effect according to fertilizer application. The mean temperature was similar in greenhouse and vinyl-moist chamber, but air humidity was higher in vinyl-moist chamber than in greenhouse. After stem planting of Elsholtzia minima Nakai, initial root growth was observed after 10 days in greenhouse and after 7 days in vinyl-moist chamber. Root growth rate was more rapid in vinyl-moist chamber. Moreover, survival rate, root growth rate and root number was slightly higher in vinyl-moist chamber than in greenhouse, indicating that vinyl-moist chamber is more effective in plant growth. When pre-treatment agents were used to remove root growth-inhibiting substances, a higher root growth rate of more than 95% was found in pre-treatment groups, excluding the group treated with AgNO3 at 77.5%. Thus, Elsholtzia minima Nakai is thought to have less root growth inhibitors. In the analysis of nitrogen application rate and Osmocote application by seedling container, a difference was found in survival rate and growth according to application rate and container conditions. When Osmocote, a slow release fertilizer, was applied to the soil surface around each culture container, survival rate and the growth of aerial and root parts were most favorable. Thus, Osmocote fertilizer is thought to be desirable for seedling propagation of Elsholtzia minima Nakai.

Effect of Growth Regulators, Genotypes and Cutting Position on Rooting and Root Growth of Chrysanthemum zawadskii H. (九折草 揷穗로부터 發根 및 根生長에 미치는 생장조절물질, 九折草 種 및 揷穗位置의 효과)

  • 김정률;유창연;조동하
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.353-357
    • /
    • 1998
  • This study was conducted to determine the effect of growth regulators, genotype, and cutting position on the rooting and root growth from cutting of Chrysanthemum zawadskii H.. Rooting rate of Keungugeolcho in the treatement of IBA 500 and 1000 ppm was the better than those of other treatments of IAA, NAA and Rooton. Rooting rate differed depending on the genotype. Hangryobonggugeolcho was better than Keungucheolcho in rooting rate. The treatment of rooton remarkably induced many roots from the cuttings of eight accessions of Chrysanthemum zawadskii H.. Also, rooting rate and number of root differed depending on cutting position. When cuttings including shoot tip were cultured on tray containing bed soil, rooting rate and number of root induced from cuttings with shoot tip was higher than when cuttings without shoot tip and with lateral axillary bud were cultured.

  • PDF

Effect of 2,4-Dichlorophenoxyacetic Acid and Kinetin on Peroxidase Isoenzymes in Ginseng(Panax ginseng C. A. Meyer) Callus Cultures (고려인삼(Panax ginseng C.A.Meyer) 조직배양에서 2.4-dichloro phenoxyacetic acid와 kinetin첨가가 Isoperoxidase 변이에 미치는 영향)

  • 김명원;강영희
    • Journal of Ginseng Research
    • /
    • v.7 no.1
    • /
    • pp.52-62
    • /
    • 1983
  • This study was undertaken to investigate the influence of kinetin and 2, 4-dichlorophenoxyacetic acid on the rate of growth, the contents of RNA, DNA, and protein. And also the effect of plant growth regulator on isoperoxidases in callus derived from root (root-callus) and petiole (petiolecallus) was investigated. The rate of growth in petiole-callus was higher than the rootcallus at 0.1 mg/l kinetin and 1mgfl 2,4-D. At 1mgll kinetic, the rate of growth increased, but at high concentration the rate of growth decreased fast. The contents of RNA, DNA and protein also increased, but it did not coincide with the increase of the growth rate of callus. The isoperoxidases of callus grown at various amounts of 2,4-D and kinetic occurred in an almost fashion, but those of root-callus appeared different from those of petiole-callus.

  • PDF

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Production of Saponin by Hairy Root Cultures of Ginseng (Panax ginseng C.A. Meyer) Transformed with Agrobacterium rhizogenes (Agrobacterium rhizogenes에 의하여 형질전환된 인삼(Panax ginseng C.A. Meyer)의 모상근 배양에 의한 Saponin 생산)

  • Hwang, Baik;Ko, Kyeong-Min;Hwang, Kyeong-Hwa;Hwang, Sung-Jin;Kang, Young-Hee
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.289-296
    • /
    • 1991
  • Cultures of hairy root induced from ginseng(Panax C.A. Meyer) transformed with Agrobacterium rhizogenes (strain A4, ATCC 15834) were established and morphologically two different hairy root strains (HB1, HB2) were obtained. To determine the optimum growth rate, the hairy root (HB2) was cultured in various liquid medium supplemented with or without plant growth hormone. The growth rate of hairy root cultured on MS medium was 1.3-3.1 times higher than those cultured on other media, and the optimum sucrose concentration and pH were 3-6%, 5.5-6.5, respectively. Also, the growth rate of hairy root was increased when 0.02 M ammonium nitrate, 1.2 mM potassium phosphate (monobasic) and 0.5 mg/l IBA were supplied to liquid medium. The saponin patterns and contents of hairy root (HB2) were determined by TLC and HPLC. The crude saponin contents were 4.67% and the total saponin contents were 1.0%, on dry weight basis.

  • PDF

Comparative Evaluation of Modified Bioreactors for Enhancement of Growth and Secondary Metabolite Biosynthesis Using Panax ginseng Hairy Roots

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites from Panax ginseng. P. ginseng hairy roots, transformed by Rhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently Sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5vvm, but at aeration rates above 0.5vvm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy root decreased with increases in the inoculum size.

Quantifying Inhibitory Effects of Reclaimed Soils on the Shoot and Root Growth of Legume plant Lentil(Lens culinaris) (정화 처리토가 렌틸(콩과식물)의 지상부 및 뿌리 성장에 주는 영향에 대한 정량평가)

  • Park, Hyesun;Kang, Sua;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • A series of pot experiments were conducted to quantitatively estimate inhibitory effects of reclaimed soil on the growth of Lentil (Lens culinaris) with two soils remediated by land farming (DDC) and low temperature thermal desorption(YJ), respectively. After cultivation in a growth chamber for 8 days, plants were harvested for the analysis of 8 indices including chlorophyll-a and carotenoid in leaves, shoot fresh weight, root dry weight, root length, number of later roots, specific root length (SRL) as well as germination rate in comparison to control experiment conducted on nursery soil. Root length was estimated by SmartRoot program from the digital images of the roots. The results showed germination rate on YJ and DDC soil decreased 29 and 71%, respectively. In comparison to the control, the averaged value of the 8 indices for YJ and DDC soil showed overall growth inhibition was 48 and 68%, respectively. When the same experiment was conducted with 25% (W/W) vermiculate amended soil, plant growth on each soil was comparable to that of the control. The results implies reclaimed soils requires additional processes and/or amendments to reuse for plant growth.

Changes in the Growth of Young Rice Seedlings in the Root Extension Stage under Different Growth Conditions (벼 착근기 생육 환경에 따른 어린모의 생육변화 분석)

  • Choi, Myoung Goo;Jeong, Jae-Hyeok;Lee, Hyen-Seok;Yang, Seo-Yeong;Lee, Chung-gun;Hwang, Woon-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.192-198
    • /
    • 2020
  • Root extension is the most important growth change that occurs during cultivation. We analyzed growth changes according to young seedling age, temperature, and the degree of root cutting in order to identify factors affecting rooting after transplanting. Root cutting did not affect plant height growth rate, root growth rate was increased in plants that experienced root cutting, and 14-day-old seedlings exhibited a higher growth rate than 7-day-old seedlings. Growth temperature experiments revealed that elongation was high at 25℃ and 28℃, but tended to be low at 18℃, and root elongation was high at 22-28℃ for 7-day-old seedlings and 22-25℃ for 14-day-old seedlings. Nitrogen absorption decreased in the following growth temperature order: 25, 28, 22, 18℃, and differences in nitrogen absorption under different growth temperatures tended to be lower in 7-day-old seedlings. The amount of nitrogen taken up by roots did not differ significantly between the short root treatment and the control, and 7-day-old seedlings tended to start nitrogen absorption faster than 14-day-old seedlings. Root vitality was highest in short-rooted 7-day-old seedlings with 3 cm of root remaining, and vitality also tended to be high in short-rooted 14-day-old seedlings.

Effects of Root Pruning, Stem Cutting and Planting Density on Survival and Growth Characteristics in Kalopanax septemlobus Seedlings (단근, 줄기 절단과 식재 밀도에 따른 음나무(Kalopanax septemlobus) 묘목의 활착 및 생장 특성)

  • Kang, Ho Sang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.97-105
    • /
    • 2013
  • Kalopanax septemlobus (Thunb. ex Murray) Koidz. is natively distributed in Korea. The importance of this species has been increased not only for high quality timber but for medicinal and edible uses. However, increasing market demand of K. septemlobus with illegal cutting and overexploitation has resulted in its rapid depletion and destruction of natural habitat. This study was conducted to understand the survival rate and growth characteristics of planted K. septemlobus seedlings with treatment of root pruning, stem cutting and planting density. The survival rate and growth of height and root-collar diameter for one- and two-year old seedlings with different planting densities were investigated in the clear-cut area of a Pinus densiflora stand for five years. One-year-old seedlings were treated with or without root pruning and planted with three density levels (5,000 trees $ha^{-1}$, 10,000 trees $ha^{-1}$, and 40,000 trees $ha^{-1}$). Two-year-old seedlings were treated with and without stem cutting and planted with the density of 5,000 trees $ha^{-1}$. The survival rate of one-year-old seedlings with root pruning treatment in the density of 10,000 trees $ha^{-1}$ was 92%, while that without root pruning in the density of 40,000 trees $ha^{-1}$ was 67% after five years. The height of one-year-old seedlings has been significantly affected only by planting density in the $5^{th}$ year. The survival rate of the two-year-old seedlings with stem cutting was 75.5% and greater than control (67.3%) in the $5^{th}$ year but no difference in height was shown between the two treatments from three years after plantation.

Influence of Initial Seedling Size and Root Pruning Intensity on Growth of Transplanting Seedling of Quercus acutissma

  • Na, Sung-Joon;Lee, Do-Hyung;Kim, In-Sik
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.709-717
    • /
    • 2013
  • The objective of this study was to examine the effect of root pruning intensity in combination with different initial seedling size on the growth of transplanting seedlings of Quercus acutissima. One-year-old seedlings were divided into three groups depending on their height, i.e. small (< 15 cm), medium (25-35 cm) and large size (35 cm <). Root of seedlings was pruned by three intensity such as, leaving 5 cm (severe), 10 cm (medium) and 15 cm (light) of taproot from the root-collar. After one year, we investigated survival rate, height and root-collar diameter (RCD) increment and final shoot dry weight. Also we measured characteristics of newly developed lateral roots such as number, total length, dry weight and diameter. Severe root pruning showed the lowest survival rate in all seedling size. Height increment, RCD increment and shoot dry weight were decreased with increasing intensity of root pruning. Seedlings of medium and light root pruning showed similar above-ground growth and dry weight of lateral roots. More large seedlings showed good survival rate, height increment and final shoot dry mass in all root pruning intensity. Therefore, one-year-old seedlings of Q. acutissima should be pruned taproot by 10 cm and transplanted to obtain excellent performance and increase the efficiency of transplanting work. Based on the findings of this study, it is important that applying to different root pruning intensity depending on initial seedling size for producing 2-year-old seedlings with excellent growth and high quality.