• Title/Summary/Keyword: root fusion

Search Result 116, Processing Time 0.026 seconds

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

Comparative Study of Posterior Lumbar Interbody Fusion via Unilateral and Bilateral Approaches in Patients with Unilateral Leg Symptoms

  • Seong, Ji-Hoon;Lee, Jong-Won;Kwon, Ki-Young;Rhee, Jong-Joo;Hur, Jin-Woo;Lee, Hyun-Koo
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • Objective : We investigated the clinical and radiological advantages of unilateral laminectomy in posterior lumbar interbody fusion (PLIF) procedure comparing with bilateral laminectomy, under the same procedural condition including bilateral instrumentation and insertion of two cages, in patients with degenerative lumbar disease with unilateral leg symptoms. Methods : We retrospectively reviewed 124 consecutive cases of PLIF via unilateral or bilateral approach between January 2006 and April 2010. In 80 cases (bilateral group), two cages were inserted via bilateral laminectomy, and in 44 cases (unilateral group), via unilateral laminectomy. The average follow-up duration was 29.5 months. The clinical outcomes were evaluated with the Visual Analogue Scale (VAS) and the Oswestry disability index (ODI). The fusion rates and disc space heights were determined by dynamic standing radiographs and/or computed tomography. Operative times, intra-operative and post-operative blood losses and hospitalization periods were also evaluated. Results : In clinical evaluation, the VAS and ODI scores showed excellent outcomes in both groups. There were no significant differences in term of fusion rate, but the perioperative blood loss and the operative time of the unilateral group were lower than that of the bilateral group. Conclusion : Unilateral laminectomy can minimize the operative time and perioperative blood loss in PLIF procedure. However, the different preoperative disc height between two groups is a limitation of this study. Despite this limitation, solid fusion and satisfactory symptomatic improvement could be achieved uniquely by our surgical method. This surgical method can be an alternative surgical technique in patients with unilateral leg pain.

A Fusion Algorithm considering Error Characteristics of the Multi-Sensor (다중센서 오차특성을 고려한 융합 알고리즘)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.4
    • /
    • pp.274-282
    • /
    • 2009
  • Various location tracking sensors; such as GPS, INS, radar, and optical equipment; are used for tracking moving targets. In order to effectively track moving targets, it is necessary to develop an effective fusion method for these heterogeneous devices. There have been studies in which the estimated values of each sensors were regarded as different models and fused together, considering the different error characteristics of the sensors for the improvement of tracking performance using heterogeneous multi-sensor. However, the rate of errors for the estimated values of other sensors has increased, in that there has been a sharp increase in sensor errors and the attempts to change the estimated sensor values for the Sensor Probability could not be applied in real time. In this study, the Sensor Probability is obtained by comparing the RMSE (Root Mean Square Error) for the difference between the updated and measured values of the Kalman filter for each sensor. The process of substituting the new combined values for the Kalman filter input values for each sensor is excluded. There are improvements in both the real-time application of estimated sensor values, and the tracking performance for the areas in which the sensor performance has rapidly decreased. The proposed algorithm adds the error characteristic of each sensor as a conditional probability value, and ensures greater accuracy by performing the track fusion with the sensors with the most reliable performance. The trajectory of a UAV is generated in an experiment and a performance analysis is conducted with other fusion algorithms.

A study on the change of microstructural and mechanical properties by the long-term thermal aging of dissimilar metal welds in nuclear power plants (원전 이종금속 용접부의 장기 열적 시효에 따른 미세조직 및 기계적 특성변화에 관한 고찰)

  • Choi, Kyoung Joon;Yoo, Seung Chang;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • In this study, the metallurgical analysis and mechanical property measurement have been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at $450^{\circ}C$ for 2,750 hours. The microstructural characterization was conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy. And the mechanical properties were measured with Vickers microhardness test and nanoindentation method. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. Type-II boundaries were found in weld side of DMW and the hardness was the highest at the narrow zone between Type-II boundary and fusion boundary.

Root canal treatment of dens invaginatus and fused tooth

  • Park, So-Young;Bae, Kwang-Shik;Lim, Sung-Sam;Baek, Seung-Ho
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.247-251
    • /
    • 2001
  • ;A dental developmental anomaly is defined as an isolated aberration in tooth form, caused by a disturbance or abnormality which occurred during tooth development. There are numerous types of dental anomalies, and a considerable variation in the extent of the defects occurs with each type. Teeth with these anomalies pose unique challenges. Since the defects are not always apparent clinically, they can confuse diagnosticians investigating the etiology of pulpal pathosis. When endodontic treatment is required, the defects often hinder access cavity preparation and canal instrumentation. Treatment planning also becomes more challenging, since the defects can create complicated periodontal problems, and the malformed teeth can be difficult to restore, particularly those weakened by endodontic therapy. Fusion is defined as the joining of two developing tooth germs resulting in a single large tooth structure. The incidence of fusion is < 1% in the Caucasian population, and it is believed that physical force or pressure produces contact of the developing teeth. Clinically and radiographically, a fused tooth usually appears as one large crown with at least partially separated roots and root canals. There may be a vertical groove in the tooth crown delineating the originally separate crowns. Dens invaginatus is a deep surface invagination of the crown or root that is lined by enamel. Teeth in both maxillary and mandibular arches may be affected, but the permanent maxillary lateral incisor is the tooth most commonly involved. Studies have revealed an incidence ranging from 0.25% to as high as 10%. The invagination ranges from a slight pitting to an anomaly occupying most of the crown and root. The invagination frequently communicates with the oral cavity, allowing the entry of irritants and microorganism either directly into pulpal tissues or into an area that is deparated from pulpal tissues by only a thin layer of enamel and dentin. This continuous ingress of irritants and the subsequent inflammation usually lead to necrosis of the adjacent pulp tissue and then to periapical or periodontal abscesses. If the invagination extends from the crown to the periradicular tissue and has no communication with the root canal system, the pulp may remain vital. Recommended treatment of fused tooth and dens invaginatus has been reported in the endodontic literature. This case report describes the endodontic treatment of a maxillary laterl incisors having fused crown and dens invaginatus.natus.

  • PDF

Elevation Correction of Multi-Temporal Digital Elevation Model based on Unmanned Aerial Vehicle Images over Agricultural Area (농경지 지역 무인항공기 영상 기반 시계열 수치표고모델 표고 보정)

  • Kim, Taeheon;Park, Jueon;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, we propose an approach for calibrating the elevation of a DEM (Digital Elevation Model), one of the key data in realizing unmanned aerial vehicle image-based precision agriculture. First of all, radiometric correction is performed on the orthophoto, and then ExG (Excess Green) is generated. The non-vegetation area is extracted based on the threshold value estimated by applying the Otsu method to ExG. Subsequently, the elevation of the DEM corresponding to the location of the non-vegetation area is extracted as EIFs (Elevation Invariant Features), which is data for elevation correction. The normalized Z-score is estimated based on the difference between the extracted EIFs to eliminate the outliers. Then, by constructing a linear regression model and correcting the elevation of the DEM, high-quality DEM is produced without GCPs (Ground Control Points). To verify the proposed method using a total of 10 DEMs, the maximum/minimum value, average/standard deviation before and after elevation correction were compared and analyzed. In addition, as a result of estimating the RMSE (Root Mean Square Error) by selecting the checkpoints, an average RMSE was derivsed as 0.35m. Comprehensively, it was confirmed that a high-quality DEM could be produced without GCPs.

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee;Moon, Byung-Kwon;Kim, Han-Kyoung;Wie, Jieun;Park, Hyo Jin;Chang, Pil-Hun;Lee, Johan;Kim, Yoonjae
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.605-622
    • /
    • 2021
  • Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.