• 제목/요약/키워드: root distribution

Search Result 981, Processing Time 0.032 seconds

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Evaluation on the Fate of Cd in Soil and Plant by using Stable Isotope Methodology (Cd 안정동위체를 이용한 토양과 식물계에서 Cd의 거동해석)

  • Yun, Sun-Gang;Jung, Gu-Bok;Kim, Won-Il;Lee, Jong-Sik;Kim, Min-Kyeong;Kim, Jin-Ho;Shin, Joong-Du;Lee, Deog-Bae;Kim, Sam-Cwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • This experiment was conducted to describe the distribution of stable isotope Cd in the mine tailing and uncultivated soils derived from different parent rocks (Igneous rock, Metamorphic rock, and Sedimentary rock) as well as the movement of Cd isotopes from soil to plants, soybean and pepper. The results showed that there was no significant difference in isotopic ratios in soil among the eight kinds of stable isotope of Cd. However the relationship among isotopic ratios of stable isotope of Cd in soils were classified to four types, linear type between $Cd^{106}/Cd^{111}$ and $Cd^{108}/Cd^{111}$, quadratic type between $Cd^{114}/Cd^{108}$ and $Cd^{111}/Cd^{110}$, reverse quadratic type between $Cd^{110}/Cd^{116}$ and $Cd^{108}/Cd^{116}$, and cluster type between $Cd^{110}/Cd^{113}$ and $Cd^{116}/Cd^{113}$. While the individual stable isotopes of Cd in root were remained except on the plot of pepper without mine tailing application. $Cd^{116}$, $Cd^{114}$, and $Cd^{112}$ played active roles among other stable isotopic Cds in bean and red pepper, and $Cd^{116}$ was ranked the highest abundance ratio. Contrary to crop itself, the abundance ratios of $Cd^{116}$ in bean and read pepper roots were decreased, and the ones of other Cds were relatively increased.

Suppressive Mechanism of Soil-borne Disease Development and its Practical Application -Isolation and Identification of Species of Trichoderma Antagonistic to Soil diseases and its activities in the Rhizosphere- (토양병의 발병억제 기작과 그 실용성 -길항성 Trichoderma spp.의 분리, 동정 및 근권내 활동-)

  • Kim, S.I.;Shim, J.O.;Shin, H.S.;Choi, H.J.;Lee, M.W.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.337-346
    • /
    • 1992
  • Trichoderma spp. are an effective control agent for damping-off or other plant diseases. The interaction between. T. hamatum and Rhizoctonia solani on the rhizosphere or surface soil were examined to assess the possible roles of antibiosis or competition in the mechanisms of biological control agents as a basic research. In a proportional comparison, total bacteria, fungi, actinomycetes and Trichoderma spp were 65%, 8.8%, 25.9% and 0.28% respectively in their distribution in the soil. Among Trichoderma spp isolated, the 5 species of Trichoderma spp were indentified as T. koninggii, T. pseudokoninggii, T. aureoviridi, T. hamatum and T. viride respectively. In a mycoparasitic test, one isolate of T. hamatum strain Tr-5 showed an enzymatic ability to break fungal hyphae into piecies and infected on the R. solani hyphae showing a parasitism. Spore germination of the all isolates of Trichoderma spp showed a 1.7-7.3% of germination in natural soil conditions, but the percentage was high in sterile soil indicating all the natural soil were fungistatic on conidia of Trichoderma spp. In rhizosphere competent assay in pea plant, the antagonistic T. hamatum, T. viride, T. koninggii, T. pseudokoninggii showed a colonizing upper soil depth in rhizosphere around 1-3 cm in root zone, but the colonizing ability was much reduced along the deeper the soil depth. Propagule density was decreased in deeper the soil layer. Disease development rate treated alone with plant pathogens, Fusarium solani, Rhizoctonia solani, Cylindrocarpon destructans increased, but disease incidence rate reduced in treatment with combinations with antagonistic T. hamatum strain Tr-5.

  • PDF

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Quality Improvement of Rainbow Trout with Pigments and Enzymatic Hydrolysates of Ascidian (Halocynthia roretzi) Tunic 1. Chemical Specificity of Ascidian Tunic and Its Hydrolysates (우렁쉥이 껍질의 색소 및 효소 가수분해물을 이용한 무지개 송어의 품질 향상 1. 우렁쉥이 껍질 및 효소 가수분해물의 화학적 특성)

  • CHOI Byeong-Dae;KANG Seok-Joong;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.345-356
    • /
    • 1996
  • Properties of enzymatic hydrolysates from ascidian tunic were assessed on supernatant ratio, solid yields and solid concentration. The concentartion of solid and yields in the extracts were increased as the enzyme concentration raised from $100\;{\mu}l\;to\;1000{\mu}l$ during the extraction period. The optima concentration and reaction time of each enzyme on digestion were $400\;{\mu}l$ 60 minutes, through treated with Duncan's multiple test. The percent of yields of solid, protein and carotenoids for 60 minutes extraction at $400\;{\mu}l$ were $32.32\%,\;1.34\%\;and\;74.60\;mg\%$, respectively, in Viscozyme systems. The extracts were composed with many kinds of carbohydrates such as arabinose, ribose, xylose, galactose, glucose, N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine. Aspartic and glutamic arid were noted as predominant amino acids in all parts. Amino acid profiles of various ascidian tunic part were similiar to each other, but most of essential amino acids content of inter coat was higher than that of root and tunic (body). About sixty six fatty acids components were observed, and their distribution among neutral and polar lipids was compared. The main fatty acids were found to be 14:0, 16:0, 16:1n7, 18:0, 18:1n9, 18:1n7, 18:2n6, 20:5n3, and 22:6n3.

  • PDF

Biomass Expansion Factors for Pinus densiflora in Relation to Ecotype and Stand Age (소나무의 생태형과 임령에 따른 물질 현존량 확장계수)

  • Park, In Hyeop;Park, Min Su;Lee, Kyeong Hak;Son, Yeong Mo;Seo, Jeong Ho;Son, Yowhan;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.441-445
    • /
    • 2005
  • Researches on estimating national-scaled forest biomass are being carried out to quantify the carbon stock of forests with the Kyoto Protocol. In general, estimates of national-scaled forest biomass are based on forest inventory data which provides estimates of forest area, stem volume, and growth of stem by age classes. Estimates of forest biomass are, however, obtained by converting stem volumes to dry weight with stem density and thereafter to whole tree biomass with biomass expansion factors (ratios of whole tree dry weight to stem dry weight). Pinus densiflora is widely distributed and one of the most economically important timber species in Korea. The species are largely grouped into two ecotypes of Geumgang and Jungbu. Stems of Geumgang type trees are straight and high compared to those of Jungbu type trees. The objective of this study was to determine and compare stem density and biomass expansion factors fore two ecotypes of Pinus densiflora according to stand age. Stem density of both ecotypes of Pinus densora increased and biomass expansion factors of them decreased with increasing tree age. In he same age class, stem density and biomass expansion factor of Geungang type Pinus densiflora were lower than those of Jungbu type Pinus densiflora. There were statistically significant differences in stem density and biomass expansion factors between Geumgang type and Jungbu type Pinus densiflora in 0-20-year-old stands and 40-60-year-old stands. Our results suggested that the reliability of the national forest biomass inventory could be improved by applying the ecotype- and age-dependent stem density and biomass expansion factors.

Density Effects on the Size of 2-1 Korean Pine and 1-1 Jack Pine Nursery Stock (잣나무 2-1 묘(苗)와 방크스소나무 1-1 묘(苗)의 생장(生長)에 미치는 밀도효과(密度効果))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 1976
  • One of the most common needle leaf species used in planting in Korea is korean pine (Pinus koraiensis S. et Z.), and jack pine (Pinus banksiana Lamb.) is one of the test species for suitability. The relation of nursery bed density of 2-1 korean pine and 1-1 jack pine was studied at the Kwang Nung Nursery, Central Branch Station of Forest Research Institute, and about 40km north of Seoul. Nursery bed density of 2-1 korean pine, which ranged from 36 to 324 trees per square meters and of 1-1 jack pine, which ranged from 25 to 169 trees per square meters, had a marked effect on caliper, height, dry weight and percent and amount of plantable stock. The soil physical and chemical properties is silt plus clay, 50.55 percent; organic matter, 2.09 percent; total nitrogen, 0.13 percent; available phosphorus, 253.25 ppm; exchangeable potash, 0.46 m.e/100g; and pH, 5.58. As the density of the nursery seedling stand of 2-1 korean pine increases, the average tree height increases (Fig. 1A), but in 1-1 jack pine density do not affect to increase or decrease the average tree height. As the density of nursery bed increases, the average stem caliper (at 2cm above ground line) and dry weight decrease (Fig. 1B), but the decreasing rate is more seriously in 1-1 jack pine than 2-1 korean pine (Fig.5). As increasing the density of nursery bed, the T/R ratio of trees of the test species increase. Also the dry weight of leaf, stem and root parts are decreasing in proportion to the increase of stand density, but the drop rate of jack pine is more rapid than korean pine (table. 1) The patent facts of difference of growth characteristics between 2-1 korean pine and 1-1 jack pine were studied. These facts should be used to select the scale of stand density at the nursery bed or the plantable site. Korean pine is demanded high density, on the other hand in jack pine low density are more suitable to manage the stand density. Stands of comparatively low density had the greatest percentage of high-quality stock, and the stands of high density had less than the high quality trees of low density. An important criterion of the best density is percent and number of high-quality trees produced per square meter of bed area. Stem caliper and stem height of seedling is used in most public nurseries to sort seedling into plantable grades. The stock grade standard has set at 4.5mm caliper and 16cm height of 2-1 korean pine as the minimum desired stem caliper and height. By the result studies, the plantable stock grade standards of 2-1 korean pine used at stem height 16cm and stem caliper 4.5mm from public nurseries should be reformed to stem height 18cm and stem caliper 4.0mm by the growth characteristics and the tree distribution of stem height and caliper of relation to density. For the 2-1 korean pine, best density should be about 160 to 200 trees per square meter according to soil fertility. For the 1-1 jack pine, the suitable standard of plantable stock should be at stem height 25cm and caliper 6mm (at 2cm above ground line) and best density was about 100 to 120 trees.

  • PDF

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

FINITE ELEMENT ANALYSIS OF MAXILLARY CENTRAL INCISORS RESTORED WITH VARIOUS POST-AND-CORE APPLICATIONS (여러가지 post-and-core로 수복된 상악 중절치의 유한요소법적 연구)

  • Seo, Min-Seock;Shon, Won-Jun;Lee, Woo-Cheol;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the theoretical technique, finite element stress-analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia ceramic crown were prepared and 1.5 mm ferrule height was provided. Each model contained cortical bone, trabecular bone, periodontal ligament, 4 mm apical root canal filling, and post-and-core. Six combinations of three parallel type post (zirconia ceramic, glass fiber, and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. A 50 N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$angle to the long axis of the tooth. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. An increase of the elastic modulus of the post material increased the stress, but shifted the maximum stress location from the dentin surface to the post material. Buccal side of cervical region (junction of core and crown) of the glass fiber post restored tooth was subjected to the highest stress concentration. Maximum von Mises stress in the remaining radicular tooth structure for low elastic modulus resin core (29.21 MPa) was slightly higher than that for high elastic modulus resin core (29.14 MPa) in case of glass fiber post. Maximum displacement of glass fiber post restored tooth was higher than that of zirconia ceramic or stainless steel post restored tooth.