Evaluation on the Fate of Cd in Soil and Plant by using Stable Isotope Methodology

Cd 안정동위체를 이용한 토양과 식물계에서 Cd의 거동해석

  • Yun, Sun-Gang (National Institute of Agricultural Science and Technology, RDA) ;
  • Jung, Gu-Bok (National Institute of Agricultural Science and Technology, RDA.) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, RDA.) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA.) ;
  • Kim, Min-Kyeong (National Institute of Agricultural Science and Technology, RDA.) ;
  • Kim, Jin-Ho (National Institute of Agricultural Science and Technology, RDA.) ;
  • Shin, Joong-Du (National Institute of Agricultural Science and Technology, RDA.) ;
  • Lee, Deog-Bae (National Institute of Agricultural Science and Technology, RDA.) ;
  • Kim, Sam-Cwan (National Institute of Agricultural Science and Technology, RDA.)
  • 윤순강 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 정구복 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김원일 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이종식 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김민경 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김진호 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 신중두 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이덕배 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김삼권 (농촌진흥청 농업과학기술원 환경생태과)
  • Received : 2008.05.11
  • Accepted : 2008.06.16
  • Published : 2008.06.30

Abstract

This experiment was conducted to describe the distribution of stable isotope Cd in the mine tailing and uncultivated soils derived from different parent rocks (Igneous rock, Metamorphic rock, and Sedimentary rock) as well as the movement of Cd isotopes from soil to plants, soybean and pepper. The results showed that there was no significant difference in isotopic ratios in soil among the eight kinds of stable isotope of Cd. However the relationship among isotopic ratios of stable isotope of Cd in soils were classified to four types, linear type between $Cd^{106}/Cd^{111}$ and $Cd^{108}/Cd^{111}$, quadratic type between $Cd^{114}/Cd^{108}$ and $Cd^{111}/Cd^{110}$, reverse quadratic type between $Cd^{110}/Cd^{116}$ and $Cd^{108}/Cd^{116}$, and cluster type between $Cd^{110}/Cd^{113}$ and $Cd^{116}/Cd^{113}$. While the individual stable isotopes of Cd in root were remained except on the plot of pepper without mine tailing application. $Cd^{116}$, $Cd^{114}$, and $Cd^{112}$ played active roles among other stable isotopic Cds in bean and red pepper, and $Cd^{116}$ was ranked the highest abundance ratio. Contrary to crop itself, the abundance ratios of $Cd^{116}$ in bean and read pepper roots were decreased, and the ones of other Cds were relatively increased.

본 연구는 모재가 상이한 산지토양과 폐광인근 지역에 광미사 중 Cd 안정동위체의 분포와 토양 중에서 Cd 안정동위체 간의 관계를 해석하고, Cd 안정동위체별 식물흡수 정도를 조사하기 위하여 광미사를 처리하고 고추와 콩을 재배하면서 식물체 지상부와 뿌리 중에 Cd의 안정동위체 분포에 대하여 조사하였다. 모재가 상이한 3가지(화강암, 변성암, 퇴적암) 토양에서 Cd의 8개 안정동위체($Cd^{106,108,110,111,112,113,114,116}$)들의 토양 중 존재비는 토양별 차이가 없었다. 그러나 토양 모재차이에 관계없이 토양 중 Cd의 안정동위체 간에 관계는 크게 4가지의 분포특성을 나타내었다. $Cd^{106}/Cd^{111}$ 간에는 직선형관계, $Cd^{114}/Cd^{108}$간에는 2차식관계, $Cd^{110}/Cd^{106}$ 간에는 역2차식 관계, $Cd^{110}/Cd^{113}$ 간에는 클러스터형 관계를 보였다. 콩과 고추 중에 Cd은 안정동위체 중 $Cd^{116}$, $Cd^{114}$, $Cd^{112}$이 주를 이루었고 존재비로는 $Cd^{116}$이 가장 많았다. 반면 콩과 고추의 뿌리에서는 $Cd^{116}$의 존재비가 감소하고 다른 7종류의 Cd 안정동위체 존재비가 상대적으로 증가하는 경향을 보였다.

Keywords

References

  1. Ahnstrom, Z.A. and D.R. Parker. 2001. Cadmium reactivity in metal-contaminated soils using a coupled stable isotope dilutionsequential extraction procedure. Environ Sci Technol. 35:121-126. https://doi.org/10.1021/es001350o
  2. Camusso, M., R. Balestrini, W. Martinotti, and M. Arpini. 1999. Spatial variations in trace metal and stable isotope content of autochthonous organisms and sediments in the river Po system (Italy). Aquatic Ecosystem Health and Management. 2:39-53. https://doi.org/10.1016/S1463-4988(99)00010-X
  3. Catherine Eimers, M., R. Douglas Evans and P. M. Welbourn. 2002. Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique. Chemosphere. 46:543-551. https://doi.org/10.1016/S0045-6535(01)00156-4
  4. Crews, H.M. 1998. Speciation of trace elements in foods, with special reference to cadmium and selenium: is it necessary ? Spectrochimica Acta. 27 : 213-219.
  5. Dietz, R.,F. Riget, K.A. Hobson, M.P. Heide-Jorgensen, P. Moller, M. Cleemann, J. de Boer, and M. Glasius. 2004. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland. The Science of The Total Environment. 331:83-105. https://doi.org/10.1016/j.scitotenv.2004.03.041
  6. Frank, W., R. Mark, M. Klaus, and M. Carsten. 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochimica et Cosmochimica Acta. 23:4639-4654.
  7. Ministry of Environment. 2003. Standard Test Method for Soil Pollution.
  8. Richard, A.V., and G.R. Philip. 2001. Cadmium Absorption in Women Fed Processed Edible Sunflower Kernels Labeled with a Stable Isotope of Cadmium113. Environmental Research. 87:69-80. https://doi.org/10.1006/enrs.2001.4288
  9. Sands, D.G., K.J.R. Rosman, and J.R. de Laeter. 2001. A preliminary study of cadmium mass fractionation in lunar soils. Earth and Planetary Science Letters. 186:103-111. https://doi.org/10.1016/S0012-821X(01)00233-3
  10. Shaun A.W. and C.H. Thomas. 2003. Pb and 111Cd through bark of mature sugar maple, white ash and white pine: a field experiment. Environmental Pollution. 121:39-48. https://doi.org/10.1016/S0269-7491(02)00208-7
  11. Suzuki, K.T., C. Sasakura, and M. Ohmichi. 1997. Binding of endogenous and exogenous cadmium to glutelin in rice grains as studied by HPLC/ICP-MS with use of a stable isotope. J. Trace Elem. Med. Biol. 11:71-76. https://doi.org/10.1016/S0946-672X(97)80029-6
  12. US EPA. 1996 Microwave assisted acid dissolution of sediments, sludges, soils and oils. 2nd ed. USEPA Office of Solid Waste and Emergency Response, Washington, DC.