• Title/Summary/Keyword: root development

Search Result 2,148, Processing Time 0.031 seconds

Occurrence of Clubroot on Pak-Choi Caused by Plasmodiophora brassicae

  • Kim, Wan-Gyu;Moon, Mi-Hwa;Kim, Jin-Hee;Choi, Hyo-Won;Hong, Sung-Kee
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.69-71
    • /
    • 2009
  • Clubroot symptoms occurred severely on roots of Pak-Choi (Brassica campestris ssp. chinensis) grown in greenhouses in Gwangju city, Gyeonggi province, Korea in September, 2008. The incidence of the disease symptoms reached as high as 90% in three greenhouses investigated. The root galls collected from the greenhouses were sectioned using a scalpel and observed by light microscope. Many resting spores were found in the cells of the root gall tissues. Suspension of resting spores was prepared from the root galls and inoculated to roots of healthy Pak-Choi plants. Each of five resting spore suspensions caused clubroot symptoms on the roots, which were similar to those observed during the greenhouse survey. Resting spores of the pathogen were observed in the cells of the affected roots. The clubroot pathogen was identified as Plasmodiophora brassicae based on its morphological and pathological characteristics. This is the first report that Plasmodiophora brassicae causes clubroot of Pak-Choi.

Antifungal activities of extracts from different parts of mulberry plant against Alternaria alternata and Fusarium sp.

  • Kwon, O-Chul;Ju, Wan-Taek;Kim, Hyun-Bok;Kim, Yong-Soon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.38 no.1
    • /
    • pp.6-13
    • /
    • 2019
  • In the present study, we investigated the antifungal activity of methanol and ethanol extracts of different parts (leaves, twigs, and root bark) of mulberry plant against Alternaria alternata and Fusarium sp. Among them, the methanol and ethanol extracts of mulberry root bark exerted the highest inhibitory activity against the mycelial growth of A. alternata ($70.6{\pm}1.6$ to $80.8{\pm}6.7%$ and $58.7{\pm}0.0$ to $80.8{\pm}6.7%$, respectively) and Fusarium sp. ($15.5{\pm}2.7$ to $39.3{\pm}3.4%$ and $26.4{\pm}2.7$ to $47.6{\pm}4.8%$, respectively). In contrast, the methanol and ethanol extracts from mulberry leaves and twigs did not suppress the mycelial growth of these fungal species. Importantly, the methanol and ethanol extracts of mulberry leaves tended to even accelerate the mycelial growth of A. alternata and Fusarium sp. Therefore, the results of this study indicate that methanol and ethanol extracts of mulberry root bark can be used as control agents against A. alternata and Fusarium sp.

Roles of Sonic Hedgehog Signaling During Tooth Root and Periodontium Formation (치근 및 치주조직 형성과정 동안 Sonic Hedgehog signaling의 역할)

  • Hwang, Jaewon;Cho, Eui-sic;Yang, Yeonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.2
    • /
    • pp.144-153
    • /
    • 2018
  • The aim of this study was to understand the roles of Sonic Hedgehog (SHH) signaling during tooth root and periodontium formation. In this study, we generated the dental mesenchyme-specific Smoothened (Smo) activated/inactivated mice with the activity of Cre recombinase under the control of osteocalcin promoter. In the Smo activated mutant molar sections at the postnatal 28 days, we found extremely thin root dentin and widened pulp chamber. Picrosirius red staining showed loosely arranged fibers in the periodontal space and decreased cellular cementum with some root resorption. Immunohistochemical staining showed less localization of matrix proteins such as Bsp, Dmp1, Pstn, and Ank in the cementum, periodontal ligament, and/or cementoblast. In the Smo inactivated mutant mouse, there was not any remarkable differences in the localization of these matrix proteins compared with the wild type. These findings suggest that adequate suppressing regulation of SHH signaling is required in the development of tooth root and periodontium.

Management Guidelines of Natural Monuments Old Trees through an Ananlysis of Growing Environments II -A Focus on Seoul, Incheon and Gyeonggi provinces- (생육환경 분석을 통한 천연기념물 노거수의 관리방안 II -서울·인천·경기지역을 중심으로-)

  • Kang, Hyun-Kyung;Lee, Seung-Je
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.36-45
    • /
    • 2004
  • This study was conducted to formulate management guidelines for monumental old trees in Korea through analysis of growing environments. A total of 20 old trees designated as natural monuments in Seoul, Incheon, and Gyeonggi provinces were surveyed for biological characteristics, surrounding environments, root collar conditions, tree health, and soil characteristics. Relationships among root collar conditions, tree health, and soil characteristics were analyzed by correlation. The old solitary trees designated as natural monuments included Pinus bungeana(4 trees), Juniperus chinensis(3 trees), Ginkgo biloba(3 trees), Poncirus trifoliata(2 trees), Actinidia arguta, Wisteria floribunda, Thuja orientalis, Quercus variabilis, Sophora japonica, Fraxinus rhynchophylla, Zelkova serrata, and Pinus densiflora. The tree height ranged from 3.56 to 67m, and root collar diameter ranged from 1.01 to 15.2m. The monumental old trees were growing on the various sites ranging from gardens, historical sites, open agricultural fields, mountain hills, to near the ocean beaches and streams. The coverage of bald land ranged from 50 to 100%, and depth of filled soil around the root collar ranged from 0 to 50cm. Tree health was expressed as the amount of branch dieback, cavity development, detachment of cambial tissue, infliction by diseases and insects. The branch dieback ranged from 5 to 20%, cavity development ranged from 10 to 100$cm^3$, detachment of cambial tissue ranged from 5 to 45%, and infliction by diseases and insects ranged from 5 to 20%. Soil pH ranged from 5.9 to 8.3, organic matter contents from 12 to 56%, phosphorus contents from 104 to 618ppm, while soil compaction ranged from 7 to 28mm. Results of correlation analysis showed that coverage of bald land was the most serious factor to deteriorate the cavity development and detachment of cambial tissue. In addition, chemical properties of soils seemed to be related to the health of the trees.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

Root Development end Branching farms of Norway Spruce(Picea abies) in the Differently Acidified Forest Soil (토양(土壤) 산성화(酸性化) 정도(程度)에 따른 독일가문비나무(Picea abies)의 뿌리 발달(發達)과 분지형태(分枝形態)에 관(關)한 연구(硏究))

  • Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.458-464
    • /
    • 2001
  • In this study, the annual growth of roots and their branching forms of Norway spruce(Picea abies [L.] Karst.) were analysed to compare the development of their root in the differently acidified forest soils. And there was no significant difference among the stands for the modified roots and the non-modified roots depending on the root branch forms, and however in the most acidified Weidenbrunnen stand, the modified roots, the abnormal root branch form such as fork, gun and rake types were appeared. As a result of the ring of the root, the annual horizontal root growth were 6.3cm for Weidenbrunnen and Barbis stands and 9.5cm for Eberg$\ddot{o}$tzen stand. The average annual vertical root growth was 4.4cm, 5.4cm, and 6.7cm for Weidenbrunnen stand, Barbis stand, and Eberg$\ddot{o}$tzen stand, respectively. The cross section area by root distribution at 80cm deep showed that the thick and thin roots were evenly distributed in of Eberg$\ddot{o}$tzen stand and the sum of root cross section area was $32.6cm^2$. In Barbis stand, the thick roots were distributed in the center while the thin roots were comparatively rare. And the sum of root cross section area was $29.2cm^2$. In Weidenbrunnen stand, only a few thin roots were found, and the total root cross section area was $10.9cm^2$. The stability coefficient of roots were in the order of Eberg$\ddot{o}$tzen stand(1.04), Barbis stand (0.3), and Weidenbrunnen(0.08) stand. Among the investigated Norway spruce stands, the modified abnormal root branching form and the low root growth appeared in the Weidenbrunnen stand could be attributed by the soil acidification etc.

  • PDF

Changes in Quality Characteristics of Wild Root Vegetables during Storage (전처리 근채류의 저장과정중의 품질평가)

  • Kwak, Soo-Jin;Park, Na-Yoon;Kim, Gi-Chang;Kim, Haeng-Ran;Yoon, Ki-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1158-1167
    • /
    • 2012
  • During the peeling, cutting, and shredding of wild root vegetables, the surface is exposed to air. This results in a rapid deterioration in quality and an increase in the potential of contamination by microorganisms, both of which reduce the shelf-life of wild root vegetables in retail markets. Thus, in this study, the effects of various washing treatments on the quality of wild root vegetables, including lotus root, burdock root, and bellflower root, were investigated at 10 and $24^{\circ}C$. Lotus root, burdock root and bellflower root were washed with 0.2% acetic acid (AA), 0.2% citric acid (CA), 500 ppm acidified sodium chlorite (ASC), and tap water (TW), which was used as a control, and stored at $10^{\circ}C$ and $24^{\circ}C$. The changes in total plate counts, coliform groups, polyphenol oxidase (PPO) activity, color, pH, and exterior appearance of the samples were then evaluated. The pH and initial microbial contamination levels were reduced when the root vegetables were washed with AA, CA, and ASC. In particular, initial population levels of total plate counts and coliform groups were not detected in lotus root and burdock root that had been washed with ASC and their growth was significantly (p<0.05) inhibited during storage at 10 and $24^{\circ}C$ when compared to the control (TW). In addition, the polyphenol oxidase (PPO) activities of the root vegetables washed with AA, CA and ASC were lower than that of root vegetables washed with TW. ASC was determined to be the most effective treatment for preventing microbial growth, tissue softening, and the development of browning and an unpleasant smell. At $10^{\circ}C$, the overall qualities of the wild root vegetables were maintained longer when compared to $24^{\circ}C$.

Autotransplantation of impacted mandibular canine (매복 하악 견치의 자가이식술을 이용한 치험례)

  • Hong, Seong-Soo;Lee, Sang-Ho;Kim, Dong-Phil
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.3
    • /
    • pp.710-717
    • /
    • 1997
  • Autotransplantation is the transplantation of embeded, impacted, or unerupted tooth, into extraction socket or surgically prepared socket in the same individual. Clinically, successful autotransplantation must show radiolucent space(periodontal ligament space) between transplanted tooth and supporting bone, lamina dura, no root resorption, no ankylosis, no inflammatory change, and physiologic tooth mobility. It is important that procedure is atraumatic, and the instruments should not contact the root surface during procedure. We performed autotransplantation of impacted mandibular canine that transversely located beneath the apices of the mandibular incisors with uncompletely developed apex. In radiographs and clinical evaluation, this transplant showed successful clinical finding except irregularity of mesial root surface after 14 months. It is conclued that transplantation of canine with $\frac{1}{2}{\sim}\frac{3}{4}$ root development provides a good chance of pulp survival, limited risk of root resorption and ensures sufficient final length, and is thus recommended.

  • PDF

Development of An Onion Peeler (I) - Root cutting equiment - (양파 박피기 개발(I))

  • 민영봉;김성태;정태상;최선웅;김정호
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2002
  • With a purpose to manufacture an onion peeler, the root cutting equipment of the onion could be attached to a prototype onion peeler was developed. Before the experiment, the distribution of the dimensions of the Korean native onion were measured. And some types of the blades to cut and remove the root of the onion were designed and such characteristics as feasible revolution, conveying speed, and power requirement were investigated. From the result of the test, the selected one among the various cutters was the wing type blade with the round blade to cut out the root and with the vertical blade to cut a circular line. The optimum operating conditions of the wing type blade were revealed the revolution with no load was at 630 rpm, and the conveying speed was 0.08 m/s. Under these conditions, the maximum torque was 5.25 kg·m and the power requirement was 33 W, respectively.