• Title/Summary/Keyword: root and leaf

Search Result 1,811, Processing Time 0.025 seconds

Accumulated Concentration of Cadmium in the Plant Organs of Arabidopsis thaliana Grown in the Soil Contaminated with Cadmium (카드뮴에 오염된 토양에서 생장한 애기장대의 식물기관에 축적된 카드뮴 농도)

  • Park, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1015-1021
    • /
    • 2008
  • This study was performed to examine the accumulated concentrations (conc.) of cadmium (Cd) in the organs of Arabidopsis thaliana grown in the soil with different conc. of Cd. The official standard conc. of Cd of pollutant exhaust notified by the Korean ministry of environment (0.1 mg/L) and ten times higher (1 mg/L) and fifty times higher (5 mg/L) conc. and no Cd in the soil as control were used for this investigation. The results showed that accumulated conc. of Cd in the stems of plant grown in the soil with different conc. (0.1, 1 and 5 mg/L) were increased 9%, 24% and 286% respectively, compared with normal plant stem. The accumulated conc. of Cd in the leafs of plant gown in the soil with official standard conc. and conc. ten times higher and conc. fifty times higher were increased 3%, 22% and 453%, respectively, compared with normal plant leaf. The accumulated conc. of Cd in the root of plant grown in the soil with 0.1 and 1 mg/L conc. of Cd were increased 6%, 19%, respectively, compared with normal plant root. However, it was observed about 84% of increased accumulation of the Cd in the root of plant, when highest (5 mg/L) conc. was used. The accumulated conc. of Cd in the different organs of Arabidopsis thaliana were increased according to increase of Cd conc. in the soil. When official standard conc. and ten times higher conc. of Cd were used, the accumulated conc. of Cd increased average 6%, 21%, respectively, compared with normal plant organ, and the accumulated conc. of Cd between leaf, stem and root were not significant. However, the accumulated conc. of Cd in the plant organs gown in the conc. fifty times higher were increased about 285%, compared with normal plant. In addition, the accumulated conc. of Cd in different organs of Arabidopsis thaliana exhibited wide differences between organs, that is, stem was increased 118% than root, leaf was increased 256%, 64% than root and stem, respectively. These results show that accumulated conc. of Cd in Arabidopsis thaliana with highest (5 mg/L) conc. of Cd in soil, were much higher in the leaf than the stem or root in proportion to the conc. of Cd contaminated within the soil.

Effects of Root-Zone Temperature on Antioxidative Enzyme Activities, Mineral Contents, and Growth of Grafted Watermelon Plug Seedlings (근권온도가 수박성형묘의 생육, 무기성분 흡수 및 항산화 효소활성에 미치는 영향)

  • Huh, Moo-Ryong;Kim, Young-Suk;Seo, Young-Guk;Park, Joong-Choon
    • Horticultural Science & Technology
    • /
    • v.18 no.6
    • /
    • pp.783-786
    • /
    • 2000
  • This study was carried out to examine the effect of root-zone temperatures on seedling growth, mineral contents and antioxidative enzyme activities of grafted watermelon. The grafted watermelon seedlings were grown in greenhouse bed for 20 days at root-zone day temperatures of 10, 15, $25^{\circ}C$ while night temperature was maintained at $10^{\circ}C$. Growth such as shoot height, leaf length, leaf number, stem diameter, and fresh and dry weights increased as increasing root-zone temperatures, and leaf area with $25^{\circ}C$($52.79mm^2$) was two times that of control($21.50mm^2$). As increasing the root-zone temperatures, Mn, Ca, Fe contents increased, K, P, Mg were non significant, and Na decreased. The activities of ascorbate peroxidase(APX) and guaiacol peroxidase(GPX) known as antioxidative enzyme were higher at $10^{\circ}C$ than $25^{\circ}C$.

  • PDF

Effects of Ethyl Methane Sulphonate Treatment on Ginseng Seeds (Ethyl Methane Sulfonate처리 인삼종자의 생물학적 효과)

  • Choe, Gwang-Tae;An, Sang-Deuk;Park, Gyu-Jin
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.163-169
    • /
    • 1981
  • In order to clarify the biological effects of chemical mutagen, ethyl methane sulphonate (EMS), in M, seedling(Ponax ginseng C. A. Meyer) . the dehiscent seeds of ginseng were treated with EMS for 12 hours at 20t and Post-washed for 24 to 72 hours. The differences of biological injuries in M, generation due to the concentration of EMS were quite obvious in rate and date of germination, stem length, stem diameter, leaf length, leaf width, root length, root diameter, and root weight . Especially, the seeds treated with the high concentration of EMS , above 0.8%, were not germinated The growth injury was directly proportional to the concentration of EMS but not relative to the post-washing time of afire 25 hours. The useful range of EMS concentration and post-washing time in ginseng seeds were 0.4 % - 0.6% and above 24 hours, respectively.

  • PDF

Ginsenoside Production by Hairy Root Cultures of Panax ginseng Transformed With Agrobacterium rhizogenes (Agrobacterium rhisogense에 의해 형질 전환된 인삼의 모상근 배양에서 Ginsenoside의 생산)

  • 고경수;허인옥고정삼이윤진
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.263-268
    • /
    • 1990
  • New methods have been developed to transform Panax ginseng with Ri plasmids of Agrobacterium rhizogenes 15834 and A. rhizogenes A4. Modified leaf disc method was made feasible to establish hairy root culture even when an axonic plantlet was not available as in the case of P. ginseng. The contents of ginsenosides (Rgl, Rf, Rc, Rbl, and Rb2) in hairy roots. were determined by HPLC. Hairy root cultures, established as liquid culture in MS medium, was produced 0.34~1.19% ginsenosides on dry weight basis, and this result is significantly higher level than that of normal P. ginseng.

  • PDF

Triterpenoid Saponin Contents of the Leaf, Stem and Root of Codonopsis lanceolata (더덕 잎, 줄기, 뿌리 부위의 Triterpenoid 사포닌 함량)

  • Kim, Ji Ah;Moon, Heung Kyu;Choi, Yong Eui
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Codonopsis lanceolata (Campanulaceae) has been used in traditional medicines, as its roots contain several kinds of 3,28-bidesmosidic triterpenoid saponin with high medicinal values. In this study, we induced hairy root-derived transgenic plants of C. lanceolata and analyzed triterpenoid saponins from the leaf, stem and root. Transgenic plants were regenerated from the hairy roots via somatic embryogenesis. The saponins are lancemaside A, B and E, foetidissimoside A, and aster saponin Hb. Transgenic plants contained richer triterpenoids saponin than wild-type plants. Major saponin lancemaside A was the most abundant saponin in the stem from transgenic-plant, $4.76mg{\cdot}1^{-1}dry$ stem. These results suggest that transgenic plants of C. lanceolata could be used as medicinal materials for the production of triterpene saponins.

Regulation of Leaf Polarity during Leaf Development (잎의 발생과정에 있어서의 극성제어)

  • Cho, Kiu-Hyung;Jun, Sang-Eun;Tsukaya , Hirokazu;Kim, Gyung-Tae
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • Leaves are indeterminate organs and possess a lot of genes which is involved in establishing leaf polarities. These polarities are regulated relatively early during leaf development and defined relative to the factors intrinsic to the primordia and interactions with the shoot apical meristem (SAM). Recently, several genes that control the polarity of lateral organs have been identified. Our genetic study of deformed root and leaf1 (drl1) mutant, which produces narrow, filament‐like leaves and defective meristems, revealed that DRL1 is involved in the regulation of SAM activity and leaf polarity. The DRL1 gene was found to encode a novel protein showing homology to Elongator‐associate protein (EAP) of yeast KTI12. The amino acid sequence of DRL1 is universally conserved in prokaryotes and eukaryotes. DRL1 and the plant DRL1 homologs clearly formed a monophyletic clade, suggesting the evolutionary conservation of DRL1 homologs was maintained in the genomes of all land plants.

Variation of Agronomic Characters in the Yearling of Ginseng Plants (일년생 인삼의 형질변이)

  • Choi, K.T.;Lee, C.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.3
    • /
    • pp.81-84
    • /
    • 1979
  • Present studies were carried out to clarify the variation of agronomic characters of Panax ginseng (violet-stem variant and yellow-berry variant) and Panax quinquefolium (American ginseng). The variations of stem diameter. stem length, leaf width, root diameter. and root length of Panax quinquefolium were found to be more variable as compared with those of Panax ginseng. As for the variations of agronomic characters of Panax ginseng. violet-stem variant was more variable than yellow-berry variant. In Panax ginseng as well as Panax quinquefolium . the variability of stem length. leaf length, and root length was high. while the other agronomic characters showed comparatively low variability.

  • PDF

Root and Top Growth of Panax ginseng at Various Soil Moisture Regime (토양수분 함량별 인삼의 근 및 지상부 생육)

  • 목성균;손석용;박훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.115-120
    • /
    • 1981
  • Effect of soil water on the growth of Panax ginseng(2 years old) was investigated through pot experiment. the results were as follows. 1. Optimum soil moisture content for root yield appeared to be 65.5% of field capacity(22.1% fresh weight basis) and at 31.5%(10.7% fresh weight basis) relative growth rate was nil. 2. Under suboptimum condition of soil moisture, emergence of shoot and leaf unfolding was delayed. The rate of emergence of shoot and leaf area was also decreased while missing shoot rate was increased. 3. Root yield was positively correlated with leaf area per plant(r=0.91 **), stem diameter (r=0.73**), stem length(r=0.71 **) fresh top yield(r=0.93**) and negatively with missing shoot rate(r=-0.77**). 4. Fresh root weight showed negative correlation(r=-0.80**) with water content of root indicating that tissue is more compact when grown at sufficient water.

  • PDF

Studies on Selection of Adaptable Varieties in Paddy - Field of Ginseng Culture (인삼 논재배에 적응하는 품종 선발에 관한 연구)

  • Kang, Seung-Weon;Lee, Sung-Woo;Hyun, Dong-Yun;Yeon, Byeong-Yeol;Kim, Young-Chang;Kim, Young-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.416-420
    • /
    • 2010
  • Root yield and quality of ginseng cultured in paddy soil was low relatively compared with that of upland soil because of moisture injury in root during rainy season. Drainage class in soils generally divided into 6 classes, and it is possible to cultivate ginseng practically in imperfectly drainage class (IDC). This study carried out to select the varieties that is suitable for paddy soil, which is easy to be generated rusty-colored root and physiological-discolored leaf. Experiment plot arranged with the condition of soil humidity contents such as poorly drainage class (PDC) and imperfectly drainage class (IDC), and upland soil. Growth characteristics and root yield were investigated in four-year-old ginseng of varieties, Cheonpoong (CP), Yeonpoong (YP), Hwangsookjong (HS), and Jakyeongjong (JK). CP among four varieties showed the highest yield in IDC and CP was the lowest ratio in leaf discoloration and rusty-colored root. HS was followed by CP in the order of root yield, but it had the weakness that the ratio of rusty-colored root was high respectively.

Free Radicals Scavenging Activity of Bulro Kugi (Lycium chinense Mill) Fruit, Leaf and Root (불로 구기 부위별 자유라디칼 소거효과에 관한 연구)

  • Kim, Eun-Hae;Kim, Hyeon-Wee;Kim, Su-Dong;Lee, Bo-Hee;Lee, Cherl-Ho;Koh, Kyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • Free radical-scavenging activities of Korean Bulro Kugi (Lycium chinense Mill) fruit, leaf, and root were evaluated. Total phenolic contents of fruit, leaf, and root were $1,078.4{\pm}61.0$, $939.9{\pm}19.8$, and $3,792.2{\pm}106.6mg/L$, and their flavonoids were $396.7{\pm}15.2$, $1,952.9{\pm}21.3$, and $425.3{\pm}13.5mg/L$, respectively (p<0.001). HPLC revealed main polyphenolic compounds in fruit were p-coumaric and syringic acids in fruit, p-coumaric, syringic, and procatechuic acids in leaf, and p-coumaric, syringic, caffeic, and procatechuic acids in root. Highest radical-scavenging activities of superoxide anion and hydroxyl were found in leaf and root, respectively (p<0.001).