• 제목/요약/키워드: roof-top PV

검색결과 15건 처리시간 0.022초

기후 분포와 모듈 사양를 고려한 태양광 발전의 출력량 분포 분석 (an Analysis of PV Power Output Considering the Distribution of Weather Condition and the spec of module)

  • 조성민;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.492_493
    • /
    • 2009
  • In this paper, we analyzed relation between weather distribution and output of PV module. Equivalent circuit of PV module was derived. Output of PV array was calculated considering temperature and insolation as input. Output of PV array installed on the roof top was also measured. Then, comparison between results was carried out to verify that relation between input and output is appropriate. Distribution of insolation and temperature was derived from KMA (Korea Meteorological Administration). Distribution of PV output was deduced, by considering weather distribution. The result of this paper can be used in economic analysis and reliability calculation.

  • PDF

제주지역에 설치된 1MW 태양광발전소의 발전특성 분석 (Analysis on the Generation Characteristics of the 1MW PV Plant in the Jeju Island)

  • 이개명;황충구
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.726-731
    • /
    • 2015
  • An 1 MW PV plant constructed at the Ara campus of Jeju National University in May 2012, which was the biggest roof-top PV plant in Korea and the biggest PV plant in Jeju Island at the time. In this paper the generation characteristics of the plant was analyzed on the basis of the data obtained during 2 years.

발열 필름을 이용한 제설 기능 PV module & system 제작 및 특성평가 (A Study on the Fabrication and Characteristics of Snow Removal PV Module & System using Heating Film)

  • 박은비;조근영;조성배;김현준;유정재;박지홍
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.159-163
    • /
    • 2016
  • Piled snow upon PV module interferes with Photoelectric Effect process through photovoltaic directly. As a result of this phenomenon, its generation efficiencies keep decreasing or are stuck at zero power generating status. In addition, PV facilities have been installed on those places such as water surface, roof-top, and other isolated places, dealing with conditions of "Securing high REC weighted value", "Difficulty of securing land" and so forth. Through this study, we are able to actualize the function of heating over PV modules when it snows. We adopted laminating method through heating film and modules, guaranteeing warranty more than for 25 years. Also we are trying remote control systemically, not by hardware control, to run parallel with automatic driving and monitoring system which enable to control operation time, insolation, amount of snowfall automatically. We applied analysis of actual proof to both snow removal PV system and general PV power system, and these led to bear power consumption analysis while snow-removing, and its comparison after finishing the task as "One stone, two birds." In the long run, we could carry out economic analysis against snow removal system, and this helps to verify the most maximized control method for snow removal conditons on a basis of weather information. this study shall let prevent people from negligent accidents, and improve power generation problems as mentioned from the top. Ultimately, we expect to apply this system to heavy snowfall regions in winter season in spite of its limited system installaion in Korean territory, initially.

한국 산업용 건물지붕 적용 PV에 의한 발전량 및 CO2 분석연구 (A Study on Electric Capacity and CO2 by the Roof Top PV System of the Industrial Building in Korea)

  • 김지수;이응직;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.131-136
    • /
    • 2010
  • The purpose of this study is to provide foundational data for expansion of solar generation in building application, a clean energy, by introducing applicability of solar power generation system on roofs of industrial buildings and computing expected amounts of power and carbon dioxides reduction. As methodologies of this study, after reviewing 120,000 domestic factories to verify the BIPV feasibility for industrial building sthrough theoretical considerations of solar generation system, we calculated BIPV application methods and subsequent expected power generation quantity and carbon dioxide reductions through roof type analysis. we analyzed four cases of expected power generation amounts of solar batteries according to application methods, and when considering that the main type of roofs are slant roofs according to the investigation result about roof forms of domestic industrial complexes, we believe that the module angle of a slant roof around $17^{\circ}$(case3) is most suitable for the application. Finally, we came up with 517,944[TOE] as the corresponding petroleum tonnage based on this computed expected power generation amount and the amount of 1,214,836[$tCO_2$] carbon dioxide reductions by calculating them by energy sources.

Investigation of Instability in Multiple Grid-Connected Inverters with LCL Output Filters

  • Asghari, Fariba;Safavizadeh, Arash;Karshenas, Hamid Reza
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.757-765
    • /
    • 2018
  • This paper deals with the instability and resonant phenomena in distribution systems with multiple grid-connected inverters with an LCL output filter. The penetration of roof-top and other types of small photovoltaic (PV) grid-connected systems is rapidly increasing in distribution grids due to the attractive incentives set forth by different governments. When the number of such grid-connected inverters increases, their interaction with the distribution grid may cause undesirable effects such as instability and resonance. In this paper, a grid system with several grid-connected inverters is studied. Since proportional-resonant (PR) controllers are becoming more popular, it is assumed that most inverters use this type of controller. An LCL filter is also considered at the inverters output to make the case as realistic as possible. A complete modeling of this system is presented. Consequently, it is shown that such a system is prone to instability due to the interactions of the inverter controllers. A modification of PR controllers is presented where the output capacitor is virtually decreased. As a result, the instability is avoided. Simulation results are presented and show a good agreement with the theoretical studies. Experimental results obtained on a laboratory setup show the validity of the analysis.