• 제목/요약/키워드: roof systems

검색결과 214건 처리시간 0.019초

한옥의 면진기법 적용 방안에 대한 개념적 고찰 (Conceptual Application Schemes of Seismic Isolation Techniques to Hanok)

  • 박범수;김영민;허무원;이상현
    • 대한건축학회논문집:구조계
    • /
    • 제36권1호
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, various application schemes of seismic isolation system which can be applied to Hanok have been studied by analyzing its structural characteristics under seismic load. Structural stability of Hanok is more required against seismic load as Hanok becomes long-spanned and multi-storied. To meet this goal, it becomes necessary to study more advanced technology such as seismic isolation design as well as seismic control design and seismic resistant design suitable to Hanok. Seismic isolation systems have been successfully applied to RC and steel structures to improve structural performance during earthquakes. Based on these previous study, we proposed four application schemes of seismic isolation design suitable for Hanok and analyzed their structural characteristics and applicability to Hanok in conceptual level based on its structural characteristics. The proposed four schemes are base isolation method, ground isolation method, roof isolation method and intermediate-story isolation method. The applicability of the proposed method was evaluated by performing boundary nonlinear dynamic analysis to the typical Hanok for the two types of isolation method, that is, ground isolation method and roof isolation method, and the results showed that the proposed methods produced good performance enough to be applied to Hanok.

주택지붕용 2kWp BIPV시스템의 성능 실험 및 전기 부하 감당에 관한 연구 (The Performance and Energy Saving Effect of a 2kWp Roof-Integrated Photovoltaic System)

  • 이강록;오명택;박경은;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.13-19
    • /
    • 2006
  • The efficiency of building-integrated photovoltaic(BIPV) system is mainly determined by solar radiation and the temperature of PV modules. The performance of BIPV systems is reported to be different from that of conventional PV systems installed in the open-air. This paper presents the relationship of solar radiation and electricity generation from a 2kWp roof-integrated PV system that is applied as building elements on an experimental house, and the energy saving effect of the BIPV system for a typical house. For the performance evaluation of the BIPV system, it produced a regression equation with measured data for winter days. The regression equation showed that a comparison of the measured electricity generation and the predicted electricity generation of the BIPV system were meaningful. It showed that an annual electricity generation of the system appeared to cover around 52% of an annual electricity consumption of a typical domestic house with the floor area of $96m^2$.

Evaluation of input-output energy use in strawberry production in single-span double-layered greenhouses with different thermal-curtain positions

  • Timothy Denen Akpenpuun;Wook-Ho Na;Qazeem Opeyemi Ogunlowo;Anis Rabiu;Misbaudeen Aderemi Adesanya;Prabhat Dutta;Ezatullah Zakir;Hyeon-Tae Kim;Hyun-Woo Lee
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.395-406
    • /
    • 2023
  • The large amount of energy required for successful crop production is the main challenge in greenhouse cropping systems. As a response to this challenge a comprehensive evaluation of greenhouse energy consumption was carried out in two structurally similar single-span greenhouses with different thermal curtain positions, with particular attention to energy productivity, specific energy, net energy, and energy ratio. The greenhouses are used for strawberry production. In the R-greenhouse (RGH), the thermal curtain hanged directly at the roof ridge, whereas in the Q-greenhouse (QGH), the thermal curtain was placed 5° from an imaginary vertical axis, from the middle of the roof ridge downwards to the north side of the greenhouse roof. The relevant data were recorded using standard methods. The results indicated that the energy expended in the RGH and QGH systems was 2,186.48 and 2,189.26 MJ/m2, respectively. Electricity and nitrogen fertilizer contributed the highest energy input in both greenhouses and in all seasons. The output energy was 3.12 and 3.82 MJ/m2, respectively, in RGH and QGH in season I and 4.40 and 4.87 MJ/m2 in season II. In terms of energy expended, there was no significant difference between the two greenhouses, nor between the two seasons. These results indicate that greenhouses of the size used in this investigation are not viable in terms of energy productivity, energy-use efficiency, and subsequent economic performance. However, further studies should be conducted to scale-up the information obtained from this investigation.

Air dome inner pressure control system

  • Miki, Norihisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.727-730
    • /
    • 1989
  • Tokyo dome is Japan's first air dome. The roof of the dome is supported by air pressure. The centralized control system (YOKOGAWA's DCS : CENTUM and YEWPACK) is applied to automatically regurate the air pressure. The control system acquires signals from sensors positioned throughout the stadium and operate 36 fans to blow air into the dome. Great emphasis is placed on the reliability and safety of the system.

  • PDF

Seismic response evaluation of concentrically rocking zipper braced frames

  • Sarand, Nasim Irani;Jalali, Abdolrahim
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.303-317
    • /
    • 2020
  • In this study an innovative rocking zipper braced frame (RZBF) is proposed to overcome the deficiencies of common concentrically braced frames. RZBF is an improved rocking concentrically braced frame which is based on combination of rocking behavior and zipper columns. The base rocking joints and post-tensioned bars provide rocking response and restoring force, respectively. Also, zipper columns distribute the unbalance force over the frame height and reduce the damage concentration. To evaluate seismic performance of RZBF, a comparison study is carried out considering concentrically braced frame, zipper braced frame, rocking concentrically braced frame and RZBF. Thereby, a suite of non-linear time history analyses had been performed on four different types of archetypes with four, six, eight, ten and twelve stories. Frames were designed and non-linear time history analyses were conducted in OpenSees. To compare the seismic behavior of the archetypes, roof drifts, residual roof drifts, story drifts, the forces of first and top story braces, PT bars forces, column uplift and base shears were taken in to consideration. Results illustrate that using RZBF, can reduce the damage due to reduced residual drifts. Zipper columns enhance the seismic performance of rocking systems. As the number of stories increase in the RZBF systems, larger top story braces were needed. So the RZBF system is applicable on low and midrise buildings.

표면온도 알고리즘을 통한 옥상녹화통합형 태양광시스템의 출력 모니터링 연구 (A Study on Output Monitoring of Green Roof Integrated PV System through Surface Temperature Algorithm)

  • 김태한;박상연
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.89-95
    • /
    • 2015
  • The centralized power supply system and rainwater treatment system, which are major infrastructure in modern cities, are showing their limitations in accommodating environment load due to climate changes that has aggravated recently. As a result, complex issues such as shortage of reserve power and urban flooding have emerged. As a single solution, decentralized systems such as a model integrating photovoltaic system and rooftop greening system are suggested. When these two systems are integrated and applied together, the synergy effect is expected as the rooftop greening has an effect of preventing urban flooding by controlling peak outflow and also reduces ambient temperature and thus the surface temperature of solar cells is lowered and power generation efficiency is improved. This study aims to compare and analyze the monitoring results of four algorithms that define correlations between micro-climate variables around rooftop greening and the surface temperature of solar cells and generate their significance. By doing so, this study seeks to present an effective algorithm that can estimate the surface temperature of solar cell that has direct impact on the efficiency of photovoltaic power generation by observing climate variables.

지붕대체형 집광집열기를 이용한 태양열 난방시스템의 동절기 성능 평가 (A Study on the Field Test of the Solar Heating System with Parabolic Solar Collectors Integrated the Roof of a Residential Building)

  • 김용기;이태원;윤광은
    • 한국태양에너지학회 논문집
    • /
    • 제27권2호
    • /
    • pp.61-69
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. Despite the popularity of simple solar domestic hot water systems, active solar space heating remains, for various reasons, marginal. And thus, the aim of this paper is to demonstrate potentialities of solar assisted space heating systems, both technically and economically. From this study found that the solar heating system with CPC solar collectors integrated the roof of a single-story residential building shares $50{\sim}55%$ of the annual heating load.

옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구 (A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency)

  • 김태한;박성은
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.

공동주택용 태양열 급탕시스템 최적공급 방안 해석연구 (Optimal Supply Scheme of Solar Hot Water Heating Systems for the Apartment Complexes)

  • 이철성;박재성;박재완;신우철;윤종호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.245-250
    • /
    • 2008
  • This study is on the availability of solar thermal energy in Korean high-rise apartment complex depending on the installation type of solar collectors to roof or facade of building. Firstly, solar access evaluation on the roof and the facade of apartment buildings was carried out. The total thermal load of each apartment unit and building was investigated and matched with the energy which was produced by solar thermal systems on the facade. The considered layout patterns of apartment buildings were '一type', 'alternative 一type', 'ㄱtype' and 'ㅁtype' and that was analyzed in prior studies. Extensive dynamic hourly energy simulations with the solar thermal system were Performed with the TRNSYS of SEL. We assumed that the apartment complex is composed of 9 buildings and located in Daejeon. The collectors are the heat-pip evacuated tube collectors and the number of collectors are 45 tubes We assumed that the collectors are installed on the balcony of each unit and the angle of incilnation is $90^{\circ}$. As a result, the supply amount of solar thermal systems is about 4,850,086kJ/hr and the solar fraction is about 66%. The solar fraction according to each azimuth is about 66% on the south, 62% on the south-east $30^{\circ}$ and 56% on the south-east $60^{\circ}$. So, we quantitatively got a line on the optimal azimuth for installing the solar thermal systems. The solar fraction has differences from 5% to 15% of each floor, 6th, 12th and 20th and those tendencies are same in analyzed each 4 types of the apartment complexes.

  • PDF

등가 모델을 이용한 대공간 구조물의 동적 거동 특성에 관한 연구 (A Study on the Characteristics of dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model)

  • 한상을;이상주;김민식;이정현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2004
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability. For those purposes, recently, the performance design concept to increase the degree of absorbed energy level of structures has been proposed. One practical way of the performance design in the spatial structures is to apply the isolation system to boundary parts of roof system and sub-structure to obtain the target performance. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify the analytical processes and to investigate the dynamic behavior of roof system according to the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

  • PDF