• Title/Summary/Keyword: roof systems

Search Result 215, Processing Time 0.021 seconds

Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations

  • Ku, C.J.;Tamura, Y.;Yoshida, A.;Miyake, K.;Chou, L.S.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • Output-only modal parameter identification is based on the assumption that external forces on a linear structure are white noise. However, harmonic excitations are also often present in real structural vibrations. In particular, it has been realized that the use of forced acceleration responses without knowledge of external forces can pose a problem in the modal parameter identification, because an external force is imparted to its impulse acceleration response function. This paper provides a three-stage identification procedure as a solution to the problem of harmonic and white noise excitations in the acceleration responses of a linear dynamic system. This procedure combines the uses of the mode indicator function, the complex mode indication function, the enhanced frequency response function, an iterative rational fraction polynomial method and mode shape inspection for the correlation-related functions of the force-embedded acceleration responses. The procedure is verified via numerical simulation of a five-floor shear building and a two-dimensional frame and also applied to ambient vibration data of a large-span roof structure. Results show that the modal parameters of these dynamic systems can be satisfactorily identified under the requirement of wide separation between vibration modes and harmonic excitations.

A Study on the Method of Urban Planning for Adaptation to Climate Change (기후변화 적응을 위한 도시계획 방안 연구)

  • Lee, Sung Hee;Kim, Jong Kon
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • This study aims to understand abnormal climate caused by impacts of climate change and to suggest the direction of urban planning focusing on adaptation to climate change. The study consists of theory consideration and case study(Chicago, Philadelphia, Seattle). As a result, the main impacts of climate change faced by urban areas are heat wave, precipitation, and drought. To prevent these impacts, it is important to prepare methods of urban planning as followings: planning for land use, park and green considering the climate patterns, establishing and managing water resources systems similar to the nature, securing renewable energy resources, and transportation facilities and exterior space with proof against climate. It is especially necessary to introduce infrastructures related to storm water, green roof, shading tree planting, green space, and permeable pavement. Finally, in order to realize urban planning for adaptation to climate change, it is needed to make the detailed and specific goal and strategy for the climate change adaptation plan and to extend the scope from the goals to an action plan, a detailed plan, and a design guideline.

Structural evaluation of a foldable cable-strut structure for kinematic roofs

  • Cai, Jianguo;Zhang, Qian;Zhang, Yiqun;Lee, Daniel Sang-hoon;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.669-680
    • /
    • 2018
  • The rapidly decreasing natural resources and the global variation of the climate push us to find intelligent and efficient structural systems to provide more people with fewer resources. This paper proposed a kinematic cable-strut system to realize sustainable structures in responding to changing environmental conditions. At first, the concept of the kinematic system based on crystal-cell pyramid (CP) cable-strut unit was given. Then the deployment of the structure was studied experimentally. After that, the static behaviors in the fully deployed state under the symmetric and asymmetric load cases were investigated. Moreover, the effects of thermal loading and the initial prestress distribution were also discussed. Comparative studies between the proposed structure and other deployable cable-strut system under three times of design load cases were carried out. Finally, the robustness of the system was studied by removal of one passive cable at one time.

Evaluation of a new proposed seismic isolator for low rise masonry structures

  • Kakolvand, Habibollah;Ghazi, Mohammad;Mehrparvar, Behnam;Parvizi, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.481-493
    • /
    • 2021
  • Low rise masonry structures are relatively inexpensive and easier to construct compared to other types of structures such as steel and reinforced concrete buildings. However, masonry structures are relatively heavier and less ductile and more vulnerable to damages in earthquakes. In this research, a new innovative low-cost seismic isolator using steel rings (SISR) is employed to reduce the seismic vulnerability of masonry structures. FEA of a masonry structure, made of concrete blocks is used to evaluate the effect of the proposed SISR on the seismic response of the structure. Two systems, fixed base and isolated from the base with the proposed SISRs, are considered. Micro-element approach and ABAQUS software are used for structural modeling. The nonlinear structural parameters of the SISRs, extracted from a recent experimental study by the authors, are used in numerical modeling. The masonry structure is studied in two separate modes, fixed base and isolated base with the proposed SISRs, under Erzincan and Imperial Valley-06 earthquakes. The accelerated response at the roof level, as well as the deformation in the masonry walls, are the parameters to assess the effect of the proposed SISRs. The results show a highly improved performance of the masonry structure with the SISRs.

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform (전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계)

  • Joung, Bo-Ra;Lee, Sang-Hyun;Chung, Lan;Choi, Hyun-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.145-152
    • /
    • 2015
  • In the study, the effects of damping devices on damping ratio increase and wind-load reduction were investigated based on the computational platform, which is one of the parametric modeling methods. The computational platform helps the designers or engineers to evaluate the efficacy of the numerous alternative structural systems for irregular Super-Tall building, which is crucial in determining the capacity and the number of the supplemental damping devices for adding the required damping ratios to the building. The inherent damping ratio was estimated based on the related domestic and foreign researches conducted by using real wind-load records. Two types of damping devices were considered: One is inter-story installation type passive control devices and the other is mass type active control devices. The supplemental damping ratio due to the damping devices was calculated by means of equivalent static analysis using an equation suggested by FEMA. The optimal design of the damping devices was conducted by using the computational platform. The structural element quantity reduction effect resulting from the installation of the damping devices could be simply assessed by proposing a wind-load reduction factor, and the effectiveness of the proposed method was verified by a numerical example of a 455m high-rise building. The comparison between roof displacement and the story shear forces by the nonlinear time history analysis and the proposed method indicated that the proposed method could simply but approximately estimate the effects of the supplemental damping devices on the roof displacement and the member force reduction.

Home-range Analysis of Pipistrelle Bat (Pipistrellus abramus) in Non-Reproductive Season by Using Radio-tracking (원격무선추적을 이용한 집박쥐의 비번식기 행동권 분석)

  • Chung, Chul-Un;Han, Sang-Hoon;Lee, Chong-Il
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.487-492
    • /
    • 2010
  • This study was conducted to analyze the home range size of Pipistrellus abramus in non-reproductive season. The survey was conducted in the day-roosting site of Pipistrellus abramus located in Gyeongju City(North Gyeongsang Province). We radio-tracked six Pipistrellus abramus(male 3, female 3) and LTM single stage radio transmitter(0.38g), R2000 ATS receiver, three element yagi antenna, roof mounted antenna and ArcGIS 3.3(ESRI, Animal Movement Extension 2.0) were used to locate bats and home range analyze. The home range sizes of the 6 radio-tracked Pipistrellus abramus ranged from 8.97 to 19.07ha(Maen $14.46{\pm}3.44ha$). Mean home range size of female($16.83{\pm}1.96ha$) was larger than that of male($12.08{\pm}2.96ha$) but there were no significant differences in home range sizes between male and female(t=2.32, p>0.05). Also, mean maximum distances from the roost was $468.73{\pm}94.38m$ but there were no significant differences between sexes(female, $422.73{\pm}10.38m$; male, $514.74{\pm}125.74m$; t=-1.26, p>0.05).