• Title/Summary/Keyword: rolling testing

Search Result 129, Processing Time 0.032 seconds

Inspection of corrosion in under frame side sill for rolling stocks using pulsed eddy current testing (펄스 와전류(Pulsed eddy current)를 이용한 도시철도차량의 Under Frame Side Sill 부식 평가)

  • Kim, Woong-Ji;Song, Sung-Jin;Kim, Hak-Jun;Chung, Jung-Duk;Lee, Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1117-1124
    • /
    • 2009
  • Under frame side sill of rolling stock structure is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time more than 20 years, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. So, detection and evaluation of the corrosion ill the under frame nondestructive is one of important issues to extend their life time. Most of nondestructive methods are not easy to apply for detecting corrosion in the under frame side sill, since the under frame side sill consist of there layered with different material (stainless steel - stainless steel - mild steel) and each layer is connected by spot weld and plug weld. Fortunately, pulsed eddy current method claimed that it can be measured not only thickness change but also corrosion under their insulation layers. So, in this study, we have investigated performance of pulsed eddy current testing method by measuring thickness variation of fabricate of mock-up specimens. The investigation results obtained from mock-up specimens and the corrosion evaluation results of the aged rolling stocks will be presented.

  • PDF

A Study on the Methodology of Virtual Engineering Technique for Rolling Stock. (철도차량에서의 Virtual Engineering 기술적용)

  • Jun Hyun Kyu;Ohk Min Hwan;Yang Doh Chul;Chung Heung Chai
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.847-852
    • /
    • 2004
  • The virtual engineering technologies have been broadly used for the design, testing, manufacturing and maintenance works of industrial product. Recently many VR systems with walk through navigation and web databases; such as design and installation database. load history database, maintenance history database et al. are developed. However, the virtual engineering in railroad industry is not well developed compared to other industries like automobile, air, shipbuilding. In this paper, we explain the strategy that we have applied the virtual engineering technology to the design works of rolling stock and our plan to build the virtual testing laboratory(VTL) in the Korea Railroad Research Institute.

  • PDF

The research of the Technology Development of the Test Equipment of the Rolling Stocks (철도차량 검수 시험설비에 관한 기술개발 연구)

  • Song Moon-Shuk;Kim Moon-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.97-102
    • /
    • 2005
  • As the railroad-base is an important factor to maintenance the rolling stocks, it is essential to improve the current problems of the environment pollution, nose, vibration, welfare, work condition and to applicate the performance betterment cases to the new base construction and pre-base maintenance. When the new base construction and pre-base maintenance is proceeded, it is necessary to construct the optimized system which includes the user's opinions enough to prevent the waste of the budget ,in that some part of the budget is spent to improve convenience, work condition, and the fault of base system after the construction. Therefore, this research intends to present the problem of the pre-constructed facilities, the testing operators' opinions, the analysis and the investigation of facilities' improvement, thorough the indication of provisions and the analysis of the result of the survey of testing operators.

  • PDF

Development of a Durability Estimation System for Turning Centers (터닝센터의 내구성 예측 시스템 개발)

  • 김기상;김석일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.460-465
    • /
    • 2000
  • In this study, a durability estimation system of turning centers is developed to systematically evaluate the effects of structural specification and testing condition on the durability. All loads such as weights, inertia forces, cutting force and so on, are automatically transferred from the upper elements to the lower elements by the force flow which can be derived from the structural code of turning center. And the external loads applying to the moving and rolling elements are determined by using the equilibrium conditions of force and moment. Especially, the durability of turning center is estimated based on the lifes of moving and rolling elements under the required testing condition.

  • PDF

A Study on Comparison Of The load Test Results Of AL Car Body Welding Method For Rolling Stock (철도차량 알루미늄 차체 용접방법에 따른 하중시험결과 비교 고찰)

  • Kim, Weon-Kyong;Won, Si-Tae;Jeon, Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1604-1612
    • /
    • 2009
  • This study introduces comparison the testing results of the AL car body which is applied to FSW and GMAW welding method. The car body is made of aluminum structure materials like a sandwich panel. The static load test was performed to evaluate the structural characteristic and stability of the AL car body. Considering the vertical, compressive, twisting load and 3-point supporting, Bend natural frequency Measurement, Twist natural frequency Measurement type as a testing terms, the structural stability of a car body was evaluated.

  • PDF

Effect of Water Contamination of the Lubricant and Surface Roughness of Bearing Steel on the Rolling Contact Fatigue Life (윤활유의 수분혼입 및 베어링강의 표면 조도가 구름접촉 피로수명에 미치는 효과)

  • Heo, Tae Hyeon;Sim, Chung-Ki;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • A large amount of research has been performed on the rolling contact fatigue(RCF) life of bearings, since it directly affects the safety and reliability of mechanical systems. It is well known that rolling contact fatigue life is influenced by several parameters including contact pressure, oil contamination by water or metal particles, and the surface conditions of bearings. However, the detailed damage mechanisms involved in rolling contact fatigue have not been clearly identified yet. In this paper the effects of water contamination of the lubricant and surface roughness of bearing steel on the rolling contact fatigue life were investigated. Two types of specimens with different surface roughness values were prepared through turning and lapping operations. They were tested under two different lubrication conditions, i.e. oil lubricant with 100% of oil and the water contaminated condition with 80% of oil and 20% of water using the rolling contact fatigue testing machine. The surface damage induced by the rolling contact fatigue was observed by using atomic force microscope(AFM). Experimental results show that the rolling contact fatigue life, $L_{10}$ was reduced by 24 to 33% depending on the lubrication condition. The reduction of fatigue life in the range of 53 to 57% was also observed at different surface roughness conditions.

Comparison and Analysis of Vibration and Shock Test Methods for Rolling Stock Equipment (철도차량 장치의 진동 및 충격시험 방법 비교 분석)

  • Kim, Young Guk;Park, Chankyoung;Ryu, Joon-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.246-252
    • /
    • 2013
  • The vibration characteristics of railway vehicles are very complex because they are not only dependent on vehicle and track conditions but also on operating conditions. Vibration can cause the failure of rolling stock equipment. To verify that the quality of rolling stock equipment is acceptable, it should be able to withstand vibration tests of reasonable magnitude and duration. There are many standards for vibration and shock tests of equipment in Korea. In this paper, we have reviewed and compared the standards (KS R 9144, R 9146 and IEC 61373) for vibration and shock tests.

Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

  • Zhou, Xiao;Liu, Qiang;Liu, Ruirui;Zhou, Haitao
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1359-1368
    • /
    • 2018
  • The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the $MgLi_2Al$ precipitated in ${\beta}-Li$ matrix due to the transformation reaction: ${\beta}-Li{\rightarrow}{\beta}-Li+MgLi_2Al+{\alpha}-Mg$. As for the alloy subjected to annealed hot rolling, ${\beta}-Li$ phase was clearly recrystallized while recrystallization rarely occurred in ${\alpha}-Mg$ phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh ${\alpha}-Mg$ grains in ${\beta}-Li$ phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

Application of Toxicity Identification Evaluation Procedures for Toxic Effluents from the Aluminum Rolling Industry (알루미늄 가공 공장 배출 방류수의 독성 원인물질 탐색)

  • Ra, Jin-Sung;Lee, Jiho;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.305-313
    • /
    • 2015
  • Objectives: The objective of this study is to identify toxicants causing acute toxicity in effluents from the aluminum rolling industry that violate the discharge limits in Korea. Methods: Whole effluent toxicity tests (WET) were conducted on effluent discharged from the aluminum rolling industry following the US EPA WET test methods. We collected effluent samples three times and evaluated acute toxicity by using Daphnia magna. We employed toxicity identification evaluation (TIE) procedures to identify toxicants causing toxicity in the effluent. Results: No specific chemical groups were identified in the seven different manipulations applied to the of wastewater effluent samples showing 1.3 toxic units (TU) according to the TIE phase I procedures. Water quality parameters for water hardness, electric conductivity and heavy metals (Mn) were 4,322 mg/l as $CaCO_3$, 11.39 mS/cm, and $5,551{\mu}g/l$, respectively. Considering water hardness and reference toxicity, high concentrations of Mn can be disqualified from the causative toxicants. Consequently, high ionic concentrations of $Na^+$(1,648 mg/l), $Ca^{2+}$(1,048 mg/l), $Mg^{2+}$(1,428 mg/l) and $SO_4{^{2-}}$(7,472 mg/l) were identified to be causative toxicants. Water hardness and electric conductivity exceed the $EC_{50}$ value obtained by biological toxicity tests using Daphnia magna. Conclusion: According to TIE procedures, high salt concentration is determined to be a major toxicant in the effluent of agro-industrial wastewater treatment plants receiving wastewater from the aluminum rolling industry.

Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite (형상기억복합재료의 저조공정 및 신뢰성 평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Choi, Il-Kook;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.634-641
    • /
    • 2001
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature.

  • PDF