• Title/Summary/Keyword: rolling speed model

Search Result 118, Processing Time 0.023 seconds

An Analytical Study of the Effect of Inclined Angle of Road on Turn-over Accident of a High-speed Coach running on a Curved Road under Cross-wind Condition (횡풍이 작용하는 속도로의 회전구간에서 도로의 편경사각이 주행차량의 전복사고에 미치는 영향에 관한 분석연구)

  • Park, Hyeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.373-381
    • /
    • 2017
  • Kyeonggi Provincial Government is considering double decker bus service to solve the problem of heavy rush hour traffic. However, the height-to-width ratio is more than 1.16 times larger than that of a general high-speed single decker bus, and the center of gravity is higher. This could cause driving stability problems, such as turnover and breakaway from the lane, especially under strong side-wind conditions at high speed. In this numerical study, the driving characteristics of a model double decker bus were reviewed under side-wind and superelevation conditions at high driving speed. The rolling, pitching, and yawing moment of the model bus were calculated with CFD numerical simulation, and the results were compared to the recovery angular moments of the model bus to evaluate the dynamic stability under given driving conditions. As the model vehicle moves on a straight level road, it is stable under any side-wind conditions. However, on a curved road under side-wind conditions, it could reach unstable conditions dynamically. There is a chance that the bus will turn over when it moves on a curved road with a radius of gyration less than 100 m under side-wind (15 m/s). However, there is a very small chance of breakaway from the lane under any driving conditions.

Flow Characteristics of WIG-Effect Vehicle with Direct-Underside-Pressurization System and Propeller (DUP와 프로펠러가 있는 위그선 주위의 유동특성)

  • Lee, Ju-Hee;Kim, Byeong-Sam;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.649-654
    • /
    • 2010
  • A three-dimensional numerical study of the WIG-effect vehicle with a direct-underside-pressurization (DUP) system and a propeller is performed to analyze the aerodynamic forces and moments acting on the vehicle. The computational model includes all the compartments of a WIG-effect vehicle, including a propeller in the middle of the fuselage and an air chamber under the fuselage. The DUP system and propeller help considerably reduce the take-off speed and minimize the effect of the hump drag when the vehicle accelerates to take off on water. The airflow is accelerated by a propeller, and the air then enters the air chamber through a channel in the middle of the fuselage, this air helps increase the lift since the dynamic pressure of air is converted to static pressure. However, the air accelerated by the propeller produces excessive drag and creates yawing moment. It is found that the effect of yawing and rolling moments on static stability is negligible.

Theoretical Analysis on Overturn Safety of Train affected by Wind Pressure (풍압력을 받는 철도차량의 전복 안전에 관한 이론 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.537-542
    • /
    • 2012
  • Rolling stocks are often subjected to the effects of natural strong wind or wind pressure caused by the crossing train. These wind pressure cause the falling-off in running stability and overturn safety. It is sometimes reported that trains are blown over by a gust of wind. So, many countries enact regulations to secure the overturn safety for wind speed. In this study, theoretical equations of overturn safety based on multi-body model are derived and analyzed the difference between the result of the solid model and that of multi-body model. In case of multi-body model, it is assumed that the degrees of freedom for carbody and bogie are assigned an independent values respectively. The results show that the latter approach based on multi-body model can access the overturn safety of train and replace the conventional method by using commercial software which is accessing with decrement of wheel load.

A Study on the Maneuverability of a Rolling Ship under Wind Forces (풍력(風力) 및 횡요(橫搖)의 영향(影響)을 고려(考慮)한 선박(船舶)의 조종성능(操縱性能)에 관한 연구(硏究))

  • Jin-Ahn,Kim;Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.3-12
    • /
    • 1984
  • Up to now, it has been common to treat the maneuvering motion of a ship as a 3-degree-freedom motion i.e. surge, sway and yaw on the sea surface, for the simplicity and mathematical calculation, and it is quite acceptable in the practical point of view. Meanwhile, considering the maneuverability of a ship under the special conditions such as in irregular waves, in wind or at high speed with small GM value, it is required that roll effect must be considered in the equation of ship motion. In this paper the author tried to build up the 4-degree-freedom motion equation by adding roll. And then, applying the M.M.G.'s mathematical model and with captive model test results the roll-coupled hydrodynamic derivatives were found. With these the author could make some simulating program for turning and zig-zag steering. Through the computer simulations, the effect of roll to the ship maneuver became clear. The effect of the wind force to the maneuverability was also found. Followings are such items that was found. 1) When roll is coupled in the maneuvering motion, the directional stability becomes worse and the turning diameter becomes smaller as roll becomes smaller as roll becomes larger. 2) When maneuver a ship in the wind, the roll becomes severe and the directional stability becomes worse. 3) When a ship turns to the starboard side, the wind blowing from 90 degree direction to starboard causes the largest roll and the largest turning diameter, and the wind from other direction doesn't change the turning diameter. 4) When a ship is travelling with a constant speed with rudder amidship, if steady wind blows from one direction, the ship turns toward that wind. This phenomenon is observed in the actual seaways.

  • PDF

Management to Prepare Fast Green Suitable for International Golf Tournament in Korea - A Case Study of the Lakeside Country Club - (한국에서 국제 골프 토너먼트 규격에 맞는 빠른 그린 관리 방법 - 레이크사이드 컨트리 클럽을 사례로 -)

  • 장유비;김진관;박장혁;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • The purpose of this study is to propose a standard putting green management program to prepare fast green suitable for international golf tournaments, and to conform whether the reported green speed model can be applied to the real field situations. The west course of Lakeside Country Club was selected for the case study. This study was initiated on August 1st, 2001 and continued through October 4th, 2001. The results are summarized as follows: 1. Following the long-term schedule, 'penncross' creeping bentgrass turf was mowed at 5.0mm(37days), 4.5mm(8days), 4.0mm(4days), 3.5mm(2days), 3.2mm(2days), 3.0mm(2days), 2.8mm(2days) and the mowing direction was changed daily. Variation of mowing height was reduced to a minimum range. Core aerification with deep tines was applied 19 days prior to the first practice round. Dry sand maintenance was top-dressed 2 times at 1.5mm/$m^2$ on the 17th day and 1.0mm/$m^2$ on the 10th day. Minimum irrigation was applied to keep the turf alive. During the tournament preparation week, dew on the putting greens was removed by using a sponge roller. Following the dew removal, the greens were cut once each morning at a height of 2.8mm. The mower used was the 21 inch working behind mower equipped with a tournament bedknife and 11 reel blades. Following the mowing, the peens were rolled with a light-weight roller in one direction in the morning. Rolling was used as a finishing technique to ensure that the surface was as smooth as possible, and to provide true ball roll and maximum green speed. In conclusion these management practices satisfied the daily green stimpmeter readings required for USGA championship play. 2. During the period of tournament preparation, no damage was observed on the green, but scalping in green edge appeared in about 0.39% of the total area of 18 greens in the west course.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

A Deformation Behavior Analysis of Dynamic Bulging in the Mini-Mill Continuous Casting System (Mini-Mill 연속주고기의 동적 Bulging해석 Model(I) -주편의 변형거동을 중심으로-)

  • 한성욱;정영진;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.138-143
    • /
    • 1998
  • The continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, replacing the conventional route of ingot casting plus rolling. To achieve this good merit, however, more studies about a heat transfer mechanism between roll and slab are needed. So this paper shows the results of the deformation behavior of steel cast slabs, which are about the solidification and heat transfer. This study is used to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure and slab-self weight has been computed in terms of creep and elastic-plasticity. The high strand distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

  • PDF

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Theoretical Analysis on Turnover Safety of Train Affected by Wind Pressure (풍압을 받는 철도 차량 전복 안전에 관한 이론 해석)

  • Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.812-817
    • /
    • 2011
  • Rolling stocks are often subjected to the effects of natural cross wind or train wind pressure due to the crossing train. These wind pressure cause the falling-off in running stability and turnover problem. It is sometimes reported that trains are blown over by a gust of wind in overseas. So, many countries enact regulations to secure the safety for wind speed. In this study, we analyzed the difference between the regulation for turnover safety of train which was enacted by Ministry of Land. Transport and Maritime Affairs and that based on the multi-body model. In case of multi-body model, it is assumed that the degrees of freedom for carbody and bogie are assigned an independent values respectively. The results show that the latter approach based on multi-body model can access the safety of turnover and replace the computational method which is accessing with lateral force, derailment coefficient and decrement of wheel load.

  • PDF

A study on the clogging of shield TBM cutterhead opening area according to the characteristics of cohesive soil content (점성토 함량 특성에 따른 shield TBM cutterhead 개구부의 폐색현상에 관한 연구)

  • Bang, Gyu-Min;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.265-280
    • /
    • 2021
  • Population density due to urbanization is making people interested in underground space development and much interest in TBM construction with low vibration and noise. This led to a lot of research on TBM. However, research on the characteristics of the cutterhead opening of the TBM equipment being occluded under the ground conditions under which it is excavated is insufficient. Accordingly, a study was conducted to investigate clogging of the cutterhead opening during the shield TBM rolling. To identify the clogging of cutterhead openings in SHIELD TBM equipment, the reduced model experiment was divided into clay rate (10%, 30%, 50%, 60%), cutterhead opening rate (30%, 50%, 60%), and cutterhead rotation direction (one-way, two-way) and rotational speed (3 RPM) and conducted in 36 cases. Results of scale model test on shield TBM clogging, it was analyzed that the ground condition containing clay soil increased the clogging effect in both directions than the unidirectional rotation, and that the lower the rotational speed of the cutterhead, the less the clogging effect. Accordingly, the direction of cutterhead rotation, rotational speed and opening rate are calculated by taking into account ground conditions during ground excavation, the clogging effect can be reduced. It is believed to be effective in saving air as the clogging effect is reduced. Therefore, this study is expected to be an important material for domestic use of shield TBM.