• Title/Summary/Keyword: rolling force model

Search Result 142, Processing Time 0.033 seconds

A Study on the Optimum Welding Conditions for Reducing the Depth of Indentation of Surface in Spot Welding (점용접 시 압흔 깊이 감소를 위한 최적 용접조건 선정에 관한 연구)

  • 서승일;이재근;장상길;차병우
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1996
  • In this paper, authors are trying to find optimum spot weldig conditions to minimize indentation of the plate surface which is crucial to quality of stainless rolling stocks. At first, to derive a simple equation to estimate the depth of indentation, a simplified one-dimensional bar model is proposed and validity of the model is confirmed by experiments. And also, to find proper welding conditions giving satisfied tensile strength of the welded joint, a simple formula is derived referring to the standard spot welding conditions by AWS. Optimization problem is formulated to find welding conditions such as welding current, time and applied force which give minimum indentation and proper tensile strength of joint, and solutions are found out. According to the results, the depth of indentation can be expressed by applied electrode froces and it can be shown that an optimum applied force exists.

  • PDF

An Improved Friction Model and Its Implications for the Slip, the Frictional Energy, and the Cornering Force and Moment of Tires

  • Park, K.S.;Oh, C.W.;Kim, T.W.;Jeong, Hyun-Yong;Kim, Y.H.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1399-1409
    • /
    • 2006
  • An improved friction model was proposed with consideration of the effect of the sliding speed, the contact pressure and the temperature, and it was implemented into a user subroutine of a commercial FEM code, ABAQUS/Explicit. Then, a smooth tire was simulated for free rolling, driving, braking and cornering situations using the improved friction model and the Coulomb friction model, and the effect of the friction models on the slip, the frictional energy distribution and the cornering force and moment was analyzed. For the free rolling, the driving and the braking situations, the improved friction model and the Coulomb friction model resulted in similar profiles of the slip and the frictional energy distributions although the magnitudes were different. The slips obtained from the simulations were in a good correlation with experimental data. For the cornering situation, the Coulomb friction model with the coefficient of friction of 1 or 2 resulted in lower or higher cornering forces and moments than experimental data. In addition, in contrast to experimental data it did not result in a maximum cornering force and a decrease of the cornering moment for the increase of the speed. However, the improved friction model resulted in similar cornering forces and moments to experimental data, and it resulted in a maximum cornering force and a decrease of the cornering moment for the increase of the speed, showing a good correlation with experimental data.

Analysis of Asymmetric Plate Rolling in Roughing Mill (열간 조압연에서 비대칭압연 해석)

  • Park H. D.;Chung J. H.;Bae W. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.13-16
    • /
    • 2000
  • In the hot strip mill, a bad threading and shape of strip strip in the finishing mill was caused by asymmetric rolling In roughing min. Mathematical analysis for camber control of roughing mill in hot strip rolling has been developed. Each equation in the camber control model was derived from geometrical characteristics of camber mechanism. The model can predict variables such as wedge, side slippage and roll force difference etc. from a measured camber value and then find an optimum roll gap condition for minimizing camber in the next pass.

  • PDF

A Study on the Fault Diagnosis of Roll-shape and Fault Tolerant Tension Control in a Continuous Process Systems (롤 형상 이상진단 및 이상극복 장력제어에 관한 연구)

  • 이창우;신기현;강현규;김광용;최승갑;박철재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.963-968
    • /
    • 2003
  • The continuous process systems usually consists of various components: driven rollers. idle rolls, load-cell and so on. Even a simple fault in a single component in the line may cause a catastrophic damage on the final products. Therefore it is absolutely necessary to diagnosis the components of the continuous systems. In this paper, an adaptive eccentricity compensation method is presented. And a new diagnosis method for transverse roll shape defects on rolling process is developed. The new method was induced from analyzing the rolling mechanism by using rolling force model, tension model, Hitchcock's equation, and measured delivery thickness of materials etc. Computer simulation results also show that the proposed diagnosis methods is very effective in the diagnosis of 3-D roll shape

  • PDF

Improvement of Mass Flow and Thickness Accuracy in Hot Strip Finishing Mill

  • Lee, Man-Hyung;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.73.3-73
    • /
    • 2001
  • Finishing mill (FM) is set up with rolling conditions (rolling speed, rolling force, roll gap, etc.) calculated by a FSU (Finisher Setup) model considering the temperature, qualities and size of a transfer bar and a strip at the entry and exit of FM before the transfer bar is rolled through FM. If the accuracy of setup is low mass flow unbalance occurs, so that the accuracies of the strip thickness and width become lower or rolling operation fault occurs. Therefore, to enhance the performance of the FSU model and to improve mass flow and the thickness accuracy of a strip in the 7-stand finishing mill using a hot strip speed measurement system. This study is being performed. In this paper, the speed measurement system, a developed neural network for predicting ...

  • PDF

3D Finite Element-based Study on Skin-pass Rolling - Part II : Development of the Model (3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part II : 모델 개발)

  • Yoon, S.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.136-140
    • /
    • 2016
  • Although the finite element method is a good tool to analyze skin-pass rolling, it is hard to be applied in the field because of its long calculation time. In the current study, simple numerical models were developed for the prediction of roll force and residual stress profiles along the strip width. These models are based on finite element analysis and a coupled solution of Sims’ equation and Hitchcock’s formula. The results indicate that plastic strains can be represented as in simple equations of the deformed roll profile and the initial thickness of the strip.

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

Mathematical Modeling of Friction Force in LM Ball Guides (LM 볼가이드 마찰력의 수학적 모델링)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.423-429
    • /
    • 2015
  • Linear motion (LM) ball guides have good accuracy and high efficiency. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, friction force incurs heat between the balls and grooves. Thermal expansion due to the heat deteriorates stiffness and accuracy of the LM ball guides. For accurate estimation of stiffness and accuracy during the linear motion, friction models of LM ball guides are required. To formulate accurate frictional models of LM ball guides according to load and preload conditions, rolling and viscous frictional analyses have been performed in this paper. Contact loads between balls and grooves are derived from Hertzian contact analysis. Contact angle variation is incorporated for the precision modeling. Viscous friction model is formulated from the shear stress of lubricant and the contact area between balls and grooves. Experiments confirm validity of the developed friction model for various external load and feedrate conditions.

Approximate Model of Thrust of Pair-Cross Mill using Axiomatic Design and Response Surface Model (공리설계와 반응표면모델에 의한 형상제어 압연기의 추력모델 개발)

  • Yoo, Jung-Hun;Kang, Yeong-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1270-1275
    • /
    • 2005
  • Rolling process to fabricate a strip with even thickness is significant to enhance the quality of the strip. The thickness of a strip can be effectively controlled by pair-cross mills. However, pair-cross mill generates thrust in the axial direction of roller and causes skewness, deflection, twist and even accidental roll chock failure. Therefore, accurate estimation of the thrust of the pair-cross mill during rolling process is necessary to monitor the failure of roll and the quality of products. An empirical equation given by Mitsubishi Heavy Industry (MHI) is hitherto employed, where the thrust is expressed in terms of rolling force, reduction ratio and crossed angle. However it turns out that the MHI empirical equation provides somehow inaccurate and unsuitable thrust in practical rolling processes. Moreover, we learn that three parameters involved in MHI equation are coupled each other. In this paper, axiomatic design principle is employed to select appropriate parameters involved in approximate equation in order to make parameters uncoupled. A quadratic equation using response surface method with new parameters is suggested. The accuracy of the approximate model is examined by comparing with real experimental data.

Formulation of Friction Forces in LM Ball Guides (LM 볼가이드의 마찰력 정식화)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.199-206
    • /
    • 2016
  • Linear motion (LM) ball guides with rolling contact are core units of feed-drive systems. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, the friction force induced from LM ball guides generates heat, which deteriorates positioning accuracy and incurs changes of stiffness and preload. To accurately analyze the effects and apply the results to precision machine design, mathematical modeling of the friction force is required. In this paper, accurate formulation of the friction force due to rolling, viscous, and slip frictions is conducted for LM ball guides. To verify the reliability of the developed friction model, experiments are performed under various assembly, load and velocity conditions. Effects of frictional components are analyzed through the formulated friction model.