• 제목/요약/키워드: rolling element

검색결과 477건 처리시간 0.051초

Fatigue Life Evaluation of Welded Joints by a Strain-life Approach Using Hardness and Tensile Strength

  • Goo Byeong-Choon;Yang Seung-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.42-50
    • /
    • 2006
  • To evaluate the fatigue lifetime of structures, it is necessary to identify the values of parameters through tests. From the viewpoint of time and cost it is difficult for engineers to get the necessary data through tests. In this study, we surveyed literature and proposed a procedure to identify the fatigue parameters expressed with the Brinell hardness and elastic modulus. After obtaining stress concentration factors by finite element analysis, we calculated fatigue notch factors using Peterson's formula. Taking into account the welding residual stress, which was also obtained by finite element analysis, we evaluated the fatigue lifetime of four kinds of welded joints using the proposed approach. The estimated results are in a good agreement with the experimental results.

다단 압연기에서의 롤 변형 프로파일 예측 모델 - Part I : 모델 개발 (An FE-based Model for the Prediction of Deformed Roll Profile in Multi-high Rolling Mills - Part I : Development of the Model)

  • 조준호;황상무
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.420-425
    • /
    • 2012
  • A new model is suggested for the prediction of radial displacements of a roll in order to analyze multi-high rolling mills. The model was developed from predictions based on finite element simulations. This model utilizes the compliance coefficient, which is expressed as a function of three dimensionless parameters, and is approximated by using the same interpolation function as used in the finite element method. The prediction accuracy of the model is demonstrated through comparison with the predictions from the FE model.

평면 플레이트 형상을 가진 탈선계수 측정용 윤축의 구조해석 (Finite Element Analysis of Wheel-set for Derailment Coefficient Measurement that have Plane Plate Shape)

  • 함영삼;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2004
  • Since a derailment of rolling stocks results in huge losses in properties and lives, the measurement of a derailment coefficient is a very important test item to estimate the running safety of rolling stocks. For a measurement of the derailment measurement of forces between the wheel and rail a measuring wheel-set should be made first. The process to make a measuring wheel-set has some stages for correct measurement. They are as follows; a finite element analysis of a wheel to find a position of holes at which vertical force shall be measured, a finite element analysis for the position of strain gauges.

  • PDF

교란 유한요소법을 이용한 하드 디스크 슬라이더의 동특성 해석 (Dynamic Characteristics of HDD Slider by Perturbed Finite Element Method)

  • 황평;콴폴리냐
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.143-148
    • /
    • 2004
  • The numerical analysis of the hard disk drive slider is presented. The pressure distribution was calculated using the finite element method. The generalized Reynolds equation was applied in order to include the gas rarefaction effect. The balance of the air bearing force and preload force was considered. The characteristics of the small vibrations near the equilibrium were studied using the perturbation method. Triangular mesh with variable element size was employed to model the two-rail slider. The flying height, pitching angle, rolling angle, stiffness and damping of the two-rail slider were calculated for radial position changing from the inner radius to the outer radius and for a wide range of the slider crown values. It was found that the flying height, pitching angle and rolling angle were increased with radial position while the stiffness and damping coefficients were decreased. The higher values of crown resulted in increased flying height, pitching angle and damping and decreased stiffness.

  • PDF

유한요소해석에 의한 하니컴 코어의 성형공정에 관한 연구 (A Study on the Forming Process of Honeycomb Core by Finite Element Analysis)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.58-64
    • /
    • 2011
  • In this paper, research on the manufacturing technology of hexagonal structure core is investigated. Also the optimal forming process of the honeycomb core is developed and the rolling process is analyzed using finite element code, $DEFORM^{TM}$-3D. The standard honeycomb has a uniform hexagonal structure defined by the material, cell size, cell wall thickness and bulk density. Honeycomb core products can be made from any thin, flat material. The most common cell configuration is the hexagon but there are many other shapes for special applications. Because of the precision shape and the thin thickness, the honeycomb core is not easy to manufacture in the metal forming process. Through this study it was confirmed that after the rolling process, the section of honeycomb close to the standard shape can be obtained. This result is reflected to the manufacturing process design for the honeycomb core.

4High Mill 열간 압연 공정의 3차원 정상상태 유한요소해석 (Finite Element Analysis of 3-D Steady State Deformation of Rolls and Strip in 4 High Mill)

  • 류성룡;김태효;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.130-133
    • /
    • 1998
  • An integrated finite element computer simulator is presented for the prediction of three dimensional heat transfer and metal flow occurring in the strip, and heat transfer and thermo elastic phenomena occurring in the rolls in 4 high mill hot strip rolling. Basic finite element models are described, with emphasis on combining each model to deal rigorously with the coupled aspect of the thermo-mechanical behaviors of the rols and strip through an iterative solution procedure. A series of process simulation are carried out to investigate the effect of various parameters under the actual process conditions. The results are shown and discussed.

  • PDF

열간 압연 중 판의 온도 분포 모델 개발 (An analytical model for the prediction of strip temperatures in hot strip rolling)

  • 김재부;이중형;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 제7회 압연 심포지엄
    • /
    • pp.97-102
    • /
    • 2009
  • In hot strip rolling, sound prediction of the temperature of the strip is vital for achieving the desired finishing mill draft temperature (FDT). In this paper, a precision on-line model for the prediction of temperature distributions along the thickness of the strip in the finishing mill is presented. The model consists of an analytic model for the prediction of temperature distributions in the inter-stand zone, and a semi-analytic model for the prediction of temperature distributions in the bite zone in which thermal boundary conditions as well as heat generation due to deformation are predicted by finite element-based, approximate models. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

롤변형에서의 반경방향 변위 예측 온라인 모델 (FE-based On-Line Model for the Prediction of Radial Displacements in Roll Deformation)

  • 조준호;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 제7회 압연 심포지엄
    • /
    • pp.19-22
    • /
    • 2009
  • It is essential to predict the deformed roll profile for the prediction of the strip profile in rolling process. The work roll of the Sendzimir mill has a small diameter in comparison to a barrel length, so that it is well deformed by the rolling pressure. Also it has a complex roll system, so it is difficult to analyze the roll deflection. In this paper, 3D finite element method is used for the analysis of the roll deflection of the Sendzimir due to the contact between rolls. But it takes much time to get the results, so that the on-line model to evaluate the radial deformation of a roll is developed on the basis of the finite element method.

  • PDF

도상이 장대 레일의 선형 온도 좌굴에 미치는 영향 (Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR)

  • 강영종;임남형;신정렬;양재성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF