• 제목/요약/키워드: rolling element

검색결과 477건 처리시간 0.029초

18Cr-10Mn-0.44N2 고질소강의 열연공정개발에 관한 연구 (A Study on the Development of Hot Rolling Process for 18Cr-10Mn-0.44N2)

  • 김영득;조종래;이종욱;배원병
    • 소성∙가공
    • /
    • 제20권4호
    • /
    • pp.296-302
    • /
    • 2011
  • The objective of this paper is to determine the effect of process parameters on the behavior of a 18Cr-10Mn-$0.44N_2$ nitrogen steel sample deformed by hot rolling. Compression tests were carried out at high temperatures to determine the flow stresses needed for a finite element(FE) analysis. The strain rate, ranging from 0.1 to $1.0s^{-1}$, significantly affected the flow stress at temperatures higher than $1,000^{\circ}C$. Non-isothermal rolling simulations and laboratory rolling tests were performed with plate specimens 14.5mm thick, 135mm wide and 226mm long. A rolling reduction of 15% per pass leading to a cumulative rolling reduction of 60% was determined as optimal. The extension ratio of 176.5% in the length direction was about 30.4 times greater than the extension ratio of 5.8% in the width direction. Isotropic properties for tensile strength, microstructure and grain size were measured after mock-up hot rolling tests. The results from the mockup tests were found to be in good agreement with those of the simulations.

평판형 전조압연의 성형특성 연구 (A Study on Forming Characteristics in Plate Type Cross Rolling Process)

  • 윤덕재;이근안;이낙규;최석우;이형욱
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

ROT 냉각과정의 Strip 두께방향의 열전달 해석 (A Integral Model for the Analysis of Strip Temperatures During ROT Cooling in Hot Strip Rolling)

  • 안주용;황상무;손성강
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 2001
  • A finite element-based, integrated process model is presented for coupled analysis of the thermal and metallurgical behavior of the strip occurring on the run-out-table in hot strip rolling. The validity of the proposed model is examined through comparison with measurements. The models capability of revealing the effect of cooling pattern on strip temperatures and the optimal cooling pattern are demonstrated through a series of process simulation. In order to improve strip shape and control temperature history of thickness direction for strip during ROT cooling.

  • PDF

유한요소법을 이용한 구동상태에 따른 타이어의 특성 분석 (Analysis of Tire Characteristics according to Driving Conditions using Finite Element Method)

  • 전도형;최주형;조진래;김기운
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.539-544
    • /
    • 2004
  • This paper discusses the measurement of tire driving performance for 2 types of tire model. Tire is almost composed of rubber, and this is related with the bearing capacity of tire due to the external force. In this study, an explicit time integration method has been used to simulate steady state rolling along a straight path and over a cleat. And analysis for tire dynamic response rolling over a cleat is importnat to study automobile NVH properties. Besides, the evaluation of contact shear force is perfomed for steady state rolling and braking state. The results show that there are noticeable differences between 205/60R15 and 225/60R15 tire model.

  • PDF

직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석 (A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process)

  • 김영도;강충길
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

FINITE ELEMENT ANALYSIS OF A STEADY-STATE ROLLING TIRE TAKING THE EFFECT OF TREAD PATTERN INTO ACCOUNT

  • KIM K. W.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.101-107
    • /
    • 2006
  • The force and moment simulation of a steady-state rolling tire taking the effect of tread pattern into account is described using a steady-state transport method with ABAQUS. Tread meshes can not fully consider a tread pattern because detailed tread meshes are not allowed in the steady-state transport method. Therefore, the tread elements are modeled to have orthotropic property instead of isotropic property. The force and moment simulation has been carried out for the cases of both isotropic and orthotropic properties of tread elements. Both cases of simulation results are then compared with the experimental results. It is verified that the orthotropic case is in a better agreement with the experimental result than the isotropic case. Angle effects of tread pattern have been studied by changing the orientation angle of orthotropic property of tread. It is shown that the groove angle in the tread shoulder region has a more effect on force and moment of a tire than that in the tread center region.

접촉해석을 이용한 볼 베어링의 Shoulder Height 설계 (Design of Shoulder Height for Ball Bearing using Contact Analysis)

  • 김태완;윤기찬;조용주
    • Tribology and Lubricants
    • /
    • 제24권5호
    • /
    • pp.228-233
    • /
    • 2008
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. A critical axial load and a critical shoulder height which are not affected by edge are calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

스테인리스 304 슬라브의 HCR 조건시 열적/기계적 거동 (Thermo-Mechanical Behavior of Type 304 Stainless Slab in Hot Charge Rolling Condition)

  • C.G. Sun;S.M. Hwang
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.183-186
    • /
    • 2003
  • A finite element-based, integrated process model is presented for a three dimensional, coupled analysis of the thermal and mechanical behavior of type 304 stainless slab during hot charge rolling (HCR) and cold charge rolling (CCR) processes. The validity of the proposed model is examined through comparison with measurements. The susceptibility on micro-crack initiation or propagation due to the thermal stress in these two different process conditions was examined. The model's capability of revealing the effect of diverse process parameters is demonstrated through a series of process simulation.

  • PDF

유한요소법을 이용한 열연중 워크롤의 온도 및 열응력 (Finite Element Analysis of Tempearture and Thermal Struess of Work Roll in Hot Strip Rolling)

  • 손성강;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.231-235
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional, transient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the interdependence between the thermo-mechanical behavior of the strip and that of work roll, which arises from roll-strip contact, as well as with the interdependence between the thermal and mechanical behavior. Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF

열연중 Work Roll의 3차원 비정상상태 열변형 유한요소 해석 (Finite Element Analysis of 3D Transient Thermo-mechanical Behav-ior of Work Roll in Hot Strip Rolling)

  • 황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.261-264
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional tran-sient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the inter-dependence between the thermo-mechanical behavior of the strip and that of the work roll which arises from roll-strip contact as well as with the interdependence between the thermal and mechanical behav-ior Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF