• Title/Summary/Keyword: roller로 인한 응력

Search Result 3, Processing Time 0.02 seconds

A Development of Coupled Wave-Induced Current Modeling System and Its application to the Idealized Shoreline with Detached Breakwater (연계 파랑류 수치모형 시스템의 개발 및 이안제가 설치된 해안에서의 적용)

  • Jang, Changhwan;Kim, Hyoseob;Ihm, Namjae
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.439-455
    • /
    • 2012
  • Coupled wave induced current modeling system(WIC) was developed from combining with the nearshore spectral wave model, SWAN, the wave induced force model, WIF, and the flow model, EFDC. The reasonable results were obtained from WIC modeling system. The ratio of the wave height calculated with respect to refraction and diffraction effects over submerged spherical shoal was occurred approximately 1~5 % errors compared to Goda(2000)'s result. The radiation stress suggested by Longuet-Higgins and Stewart(1960), the stresses due to rollers in breaking waves proposed by Dally and Osiecki(1994), and Kim(2004)'s new spreading approach instead of the previous lateral mixing approach were added to calculate wave induced force. The results of the WIC modeling system show good agreement with Nishimura et al.(1985)'s laboratory measurements and better than Kim(2004)'s 2 dimensional depth averaged numerical computations for a plane beach with detached breakwater. The present flow field computed agrees reasonably well with the measured flow field. The relative merit of WIF model in WIC modeling system is unconditional stable for time increment.

Contact Surface Fatigue Life for RPG System (RPG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kwon, Soon-Man;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1453-1459
    • /
    • 2011
  • A roller pinion gear (RPG) system composed of either a pin or a roller and its conjugated cam gear can improve the gear endurance from that of a conventional gear system by reducing the sliding contact while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection condition obtained when the profile shift coefficient is introduced. Then, we investigated the Hertzian contact stresses and the load stress factors while the varying the shape design parameters to predict the gear surface fatigue life, which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Thickness Design of Composite Pavement for Heavy-Duty Roads Considering Cumulative Fatigue Damage in Roller-Compacted Concrete Base (롤러전압콘크리트 기층의 누적피로손상을 고려한 중하중 도로의 복합포장 두께 설계)

  • Kim, Kyoung Su;Kim, Young Kyu;Chhay, Lyhour;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.537-548
    • /
    • 2022
  • It is important to design the pavement thickness considering heavy-duty traffic loads, which can cause excessive stress and strain in the pavement. Port-rear roads and industrial roads have many problems due to early stress in pavement because these have a higher ratio of heavy loads than general roads such as national roads and expressways. Internationally, composite pavement has been widely applied in pavement designs in heavy-duty areas. Composite pavement is established as an economic pavement type that can increase the design life by nearly double compared to that of existing pavement while also decreasing maintenance and user costs. This study suggests a thickness design method for composite pavement using roller-compacted concrete as a base material to ensure long-term serviceability in heavy-duty areas such as port-rear roads and industrial roads. A three-dimensional finite element analysis was conducted to investigate the mechanical behavior and the long-term pavement performance ultimately to suggest a thickness design method that considers changes in the material properties of the roller-compacted concrete (RCC) base layer. In addition, this study presents a user-friendly catalog design method for RCC-base composite pavement considering the concept of linear damage accumulation for each container trailer depending on the season.