DOI QR코드

DOI QR Code

Thickness Design of Composite Pavement for Heavy-Duty Roads Considering Cumulative Fatigue Damage in Roller-Compacted Concrete Base

롤러전압콘크리트 기층의 누적피로손상을 고려한 중하중 도로의 복합포장 두께 설계

  • Received : 2021.07.12
  • Accepted : 2022.04.12
  • Published : 2022.08.01

Abstract

It is important to design the pavement thickness considering heavy-duty traffic loads, which can cause excessive stress and strain in the pavement. Port-rear roads and industrial roads have many problems due to early stress in pavement because these have a higher ratio of heavy loads than general roads such as national roads and expressways. Internationally, composite pavement has been widely applied in pavement designs in heavy-duty areas. Composite pavement is established as an economic pavement type that can increase the design life by nearly double compared to that of existing pavement while also decreasing maintenance and user costs. This study suggests a thickness design method for composite pavement using roller-compacted concrete as a base material to ensure long-term serviceability in heavy-duty areas such as port-rear roads and industrial roads. A three-dimensional finite element analysis was conducted to investigate the mechanical behavior and the long-term pavement performance ultimately to suggest a thickness design method that considers changes in the material properties of the roller-compacted concrete (RCC) base layer. In addition, this study presents a user-friendly catalog design method for RCC-base composite pavement considering the concept of linear damage accumulation for each container trailer depending on the season.

중하중의 교통하중은 포장체에 과도한 응력과 변형을 발생시키므로 이에 대응할 수 있는 포장 단면 설계가 중요하다. 항만 배후도로와 산업도로는 일반도로에 비해 중하중 교통의 비율이 높아 포장의 조기 파손으로 인한 문제가 다수 발생되고 있다. 국외의 경우 중차량의 통행이 많은 도로의 포장설계는 복합포장을 많이 적용하고 있다. 복합포장은 기존 포장의 설계수명을 2배 이상 증대시켜 보수비용 및 사용자 비용을 절감할 수 있는 경제적 포장 형식으로 인식되고 있다. 본 연구에서는 중하중 교통의 비율이 높은 산업도로와 항만 배후도로의 포장 장기 공용성을 확보할 수 있도록 롤러전압콘크리트 기층을 활용한 복합포장의 두께 설계 방안을 제안하고자 한다. 3차원 유한요소해석을 이용하여 포장의 재료물성 변화에 따른 역학적 거동과 장기 공용성을 검토하였으며, 계절별 컨테이너 트레일러에 의해 발생되는 롤러전압콘크리트 기층의 누적피로손상도을 고려하여 사용자가 쉽게 사용할 수 있는 카탈로그 설계를 제안하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No.2021R1I1A1A01058921). 이에 감사드립니다.

References

  1. ACI 325.10R-95 (1995). Report on roller-compacted concrete pavements (Reapproved 2001), American Concrete Institute, USA.
  2. American Concrete Pavement Association (ACPA) (2014). ACPA guide specification: Roller-compacted concrete pavements as exposed wearing surface: ver.1.2.
  3. Asphalt Pavement Alliance (APA) (2002). Perpetual pavement: A synthesis, APA 101, Lanham, Maryland.
  4. Carwie, C. and Zollonger, C. J. (2014). On a roll special digtal issue: Roller-compacted concrete is gaining in popularity. we have is covered with six feature stories, Magazine PublicWorks, USA.
  5. Chhorn, C. and Lee, S. W. (2016). "Influencing compressive strength of roller-compacted concrete." Proceeding of ICE, Construction Materials, DOI: 10.1680/jcoma. 16.00009.
  6. Chung, G. W. and Lee, S. W. (2015). "Optimum compaction test of roller compacted concrete pavement." Journal of the Korean Society of Road Engineers, Vol. 17, No. 3, pp. 27-33 (in Korean).
  7. Flintsch, G. W., Diefenderfer, B. K. and Nunez, O. (2008). Composite pavement systems: Synthesis of design and construction practices, Virginia Transportation Research Council, FHWA/VTRC 09-CR2, USA.
  8. Harrington, D., Abdo, F., Adaska, W., Hazaree, C. V. and Ceylan, H. (2010). Guide for roller-compacted concrete pavements, intrans project report, National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, Ames, IA, pp. 104.
  9. Huang, Y. H. (2004). Pavement anaylysis and design, Pearson Education, USA.
  10. Kim, K. S., Kim, D. A., Kim, H. R. and Hyun, E. T. (2019). "Design review of inter-modal terminal platform for temperature load." Journal of the Computational Structural Engineering Institute of Korea, Vol. 32, No. 5, pp. 305-311 (in Korean). https://doi.org/10.7734/COSEIK.2019.32.5.305
  11. Lee, C. H., Kim, Y. K., Kang, J. G., Park, C. W. and Lee, S. W. (2011). "A study on construction methods of roller compacted concrete pavement for bike roads." Journal of the Korean Society of Road Engineers, Vol. 13, No. 2, pp. 103-114 (in Korean).
  12. Lee, J. H. and Lee, S. W. (2016). "Experimental study on correlation analysis of air-void, air-spacing factor and long-term durability for roller-compacted concrete pavement." Journal of the Korean Society of Road Engineers, Vol. 18, No. 1, pp. 63-72 (in Korean).
  13. National Cooperative Highway Research Program (NCHRP) (2004). Part3 design analysis-guide for mechanistic-empirical design of new and rehabilitation pavement structures, Final Report 1-37A, Illinois, USA.
  14. Newcomb, D. E., Buncher, M. and Huddleston, I. J. (2001). Concept of perpetual pavements, Transportation Research Board, Transportation Research Circular No. 503. Perpetual Bituminous Pavements, Washington DC., USA.
  15. Park, J. Y., Lee, S. W., Han, S. H. and Kim, Y. K. (2020). "Fatigue behavior of roller-compacted concrete pavement based on full-scale fatigue test." Journal of Testing and Evaluation, DOI: https://doi.org/10.1520/JTE20170522. ISSN 0090-3973.
  16. Song, S. H. and Lee, S. W. (2015). "A study on the gradation effect of the property of roller compacted concrete pavement." Journal of the Korean Society of Road Engineers, Vol. 17, No. 3, pp. 49-58 (in Korean).
  17. Sun, W., Liu, J., Qin, H., Zhang, Y., Jin, Z. and Qian, M. (1998). "Fatigue performance and equations of roller compacted concrete with fly ash." Cem. Concr. Res., Vol. 28, No. 2, pp. 309-315, DOI: https://doi.org/10.1016/S0008-8846(97)00211-1.