• Title/Summary/Keyword: roll rate sensor

Search Result 25, Processing Time 0.026 seconds

Improvement of Unexpected Pitch Down Tendency of an Aircraft (항공기 기수 숙임 현상 개선)

  • Kim, Chong-Sup;Kwon, Hui-Man;Koh, Gi-Ok;Han, Kwang-Ho;Lee, Seung-Deok;Hwang, Byung-Moon;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • The flight control system utilize RSS(Relaxed Static Stability) criteria in both longitudinal axes to achieve performance enhancements and improve stability. The aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as pitch, roll and yaw rate, normal acceleration from RSA(Rate Sensor Assembly) and ASA(Acceleration Sensor Assembly). These sensors has permissible measurement error related to system safety of an aircraft but, unexpected flight motions are happened by sensing errors such as offset, noise and etc. The unexpected pitch down tendency occurred by ASA sensor bias in 1g level flight with pilot hands-off. This paper addresses the design and verification of flight control law to improve of pitch down or up tendency caused by ASA sensor bias. The result of analysis and flight test reveals that pitch down tendency can be improved by pitch attitude feedback system.

Fabrication and Application of Graphene Composite with Various Modifications (다양한 변화가 가능한 그래핀 복합체 제작 및 응용)

  • Park, Jongsung;Kim, Dong-Su;Kim, Ji-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.201-204
    • /
    • 2020
  • In this study, we fabricated and evaluated graphene composite based 3D scaffolds and planar films. The hybrid composite was prepared by mixing a calculated amount of graphene nanopowder and polydimethylsiloxane in tetrahydrofuran solution. The hybrid composite is easy to manufacture into various forms using direct printing technology or a pressing method. A 3D scaffold structure was prepared at ambient temperature with a flow rate of 240 mm/min. The nozzle pressure was maintained at 350 kPa by adjusting the viscosity of the composite material. The planar film was prepared at different thicknesses using a roll-to-roll equipment. The prepared hybrid nanocomposites were evaluated to investigate their electrical properties according to temperature and mechanical deformation. The obtained results were consistent with each other. Therefore, it can be used effectively as sensors through shape definition.

Fine Digital Sun Sensor(FDSS) Design and Analysis for STSAT-2

  • Rhee, Sung-Ho;Jang, Tae-Seong;Ryu, Chang-Wan;Nam, Myeong-Ryong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1787-1790
    • /
    • 2005
  • We have developed satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2) scheduled to be launched in 2007. The analog sun sensors which have been continuously developed since the 1990s are not adequate for satellites which require fine attitude control system. From the mission requirements of STSAT-2, a compact, fast and fine digital sensor was proposed. The test of the fine attitude determination for the pitch and roll axis, though the main mission of STSAT-2, will be performed by the newly developed FDSS. The FDSS use a CMOS image sensor and has an accuracy of less than 0.01degrees, an update rate of 20Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize the weight while maintaining sensor accuracy by a rigorous centroid algorithm. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA) in acquiring images from the CMOS sensor, and storing and processing the data. This paper also describes the analysis of the optical performance for the proper aperture selection and the most effective centroid algorithm.

  • PDF

Development of Rotational Motion Estimation System for a UUV/USV based on TMS320F28335 microprocessor

  • Tran, Ngoc-Huy;Choi, Hyeung-Sik;Kim, Joon-Young;Lee, Min-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.223-232
    • /
    • 2012
  • For the accurate estimation of the position and orientation of a UUV (unmanned underwater vehicle), a low-cost AHRS (attitude heading reference system) was developed using a low-cost IMU (inertial measurement unit) sensor which provides information on the 3D acceleration, 3D turning rate and 3D earth-magnetic field data in the object coordinate system. The main hardware system is composed of an IMU sensor (ADIS16405) and TMS320F28335, which is coded with an extended kalman filter algorithm with a 50-Hz sampling frequency. Through an experimental gimbal device, good estimation performance for the pitch, roll, and yaw angles of the developed AHRS was verified by comparing to those of a commercial AHRS called the MTi system. The experimental results are here presented and analyzed.

Sound System Analysis for Health Smart Home

  • CASTELLI Eric;ISTRATE Dan;NGUYEN Cong-Phuong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.237-243
    • /
    • 2004
  • A multichannel smart sound sensor capable to detect and identify sound events in noisy conditions is presented in this paper. Sound information extraction is a complex task and the main difficulty consists is the extraction of high­level information from an one-dimensional signal. The input of smart sound sensor is composed of data collected by 5 microphones and its output data is sent through a network. For a real time working purpose, the sound analysis is divided in three steps: sound event detection for each sound channel, fusion between simultaneously events and sound identification. The event detection module find impulsive signals in the noise and extracts them from the signal flow. Our smart sensor must be capable to identify impulsive signals but also speech presence too, in a noisy environment. The classification module is launched in a parallel task on the channel chosen by data fusion process. It looks to identify the event sound between seven predefined sound classes and uses a Gaussian Mixture Model (GMM) method. Mel Frequency Cepstral Coefficients are used in combination with new ones like zero crossing rate, centroid and roll-off point. This smart sound sensor is a part of a medical telemonitoring project with the aim of detecting serious accidents.

  • PDF

Verification of Missile Angular Velocity Calculation Using FMS (FMS를 이용한 대전차 유도탄의 각속도 계산식 검증)

  • Park, Eo-Jin;Kim, Wan-Shik;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.992-997
    • /
    • 2009
  • This paper focuses on the calculation of the missile angular velocity under the reduced sensor condition and its verification using the Flight Motion Simulator(FMS). The missile angular velocity is usually measured by the body gyroscopes, but we assume that the inertial sensors on the missile body are in the absence of pitch and yaw gyroscopes. Under this reduced sensor condition, this paper shows the missile angular velocity can be calculated by using the gimbal seeker gyroscope, the roll body gyroscope, the gimbal angle and its rate. The FMS experiment was carried out to verify the proposed algorithm.

Algorithm for Identifying Highway Horizontal Alignment using GPS/INS Sensor Data (GPS/INS 센서 자료를 이용한 도로 평면선형인식 알고리즘 개발)

  • Jeong, Eun-Bi;Joo, Shin-Hye;Oh, Cheol;Yun, Duk-Geun;Park, Jae-Hong
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • Geometric information is a key element for evaluating traffic safety and road maintenance. This study developed an algorithm to identify horizontal alignment using global positioning system(GPS) and inertial navigation system(INS) data. Roll and heading information extracted from GPS/INS were utilized to classify horizontal alignment into tangent, circular curve, and transition curve. The proposed algorithm consists of two components including smoothing for eliminating outlier and a heuristic classification algorithm. A genetic algorithm(GA) was adopted to calibrate parameters associated with the algorithm. Both freeway and rural highway data were used to evaluate the performance of the proposed algorithm. Promising results, which 90.48% and 88.24% of classification accuracy were obtainable for freeway and rural highway respectively, demonstrated the technical feasibility of the algorithm for the implementation.

Research of Satellite Autonomous Navigation Using Star Sensor Algorithm (별 추적기 알고리즘을 활용한 위성 자율항법 연구)

  • Hyunseung Kim;Chul Hyun;Hojin Lee;Donggeon Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.232-243
    • /
    • 2024
  • In order to perform various missions in space, including planetary exploration, estimating the position of a satellite in orbit is a very important factor because it is directly related to the success rate of mission performance. As a study for autonomous satellite navigation, this study estimated the satellite's attitude and real time orbital position using a star sensor algorithm with two star trackers and earth sensor. To implement the star sensor algorithm, a simulator was constructed and the position error of the satellite estimated through the technique presented in the paper was analyzed. Due to lens distortion and errors in the center point finding algorithm, the average attitude estimation error was at the level of 2.6 rad in the roll direction. And the position error was confirmed by attitude error, so average error in altitude direction was 516 m. It is expected that the proposed satellite attitude and position estimation technique will contribute to analyzing star sensor performance and improving position estimation accuracy.

A Study on the DBS Receive Tracking Antenna Apparatus on a Ship by the Az/El Mount (Az/El 마운트에 의한 선박용 DBS 수신추적안테나 장치에 관한 연구)

  • 최조천;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • DBS offers actual services to mass-media and communication system of very broad region in information society. Especially, the DBS is the only system to access TV broadcasting service on a sailing ship. But the ship's DBS receiver is required a complex antenna tracking system because ships are under complex moving such as pitch, roll, and yaw etc. This study is motivated to develop a tracking antenna system to receive the koreasat on small silo ship. Therefore, this system is researched to small size, light weight, simple operation, and low cost of the product. The mount structure have been a compact size and easy operation to the Az/El 2-axis type which is operated by step motor. And it is very useful on a ship in the around sea of korean peninsula. The antenna has a plate type of micro-strip array, and is a domestic production. The vibration sensor is selected to gyro sensor of ultra-sonic rate type for ship's moving control. Tracking method is used the step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Tracking test is operated by the ship's moving simulator, we examined the actual receiving state on sailing shipboard in the near sea of korean peninsular.

  • PDF

Dynamic Position of Vehicles using AHRS IMU Sense (AHRS IMU 센서를 이용한 이동체의 동적 위치 결정)

  • Back Ki-Suk;Lee Jong-Chool;Hong Soon-Hyun;Cha Sung-Yeoul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF