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' Abstract:

A multichannel smart sound sensor capable to detect and identify sound events in noisy conditions is presente] in
this paper. Sound information extraction is a complex task and the main difficulty consists is the extraction of h gh-
level information from an one-dimensional signal. The input of smart sound sensor is composed of data collected by
5 microphones and its output data is sent through a network. For a real time working purpose, the sound analys:s is
divided in three steps: sound event detection for each sound channel, fusion between simultaneously events and
sound identification. The event detection module find impulsive signals in the noise and extracts them from the
signal flow. Our smart sensor must be capable to identify impulsive signals but also speech presence too, in a noisy
environment. The classification module is launched in a parallel task on the channel chosen by data fusion proc:ss.
It looks to identify the event sound between seven predefined sound classes and uses a Gaussian Mixture Mcdel
(GMM) method. Mel Frequency Cepstral Coetficients are used in combination with new ones like zero crossing
rate, centroid and roll-off point. This smart sound sensor is a part of a medical telemonitoring project with the aim of
detecting serious accidents.
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1. INTRODUCTION

Our days, sound became a preferred interface and
information source for smart home and perceptive
spaces. Sound contains low level information like class
(silence or music or diverse sounds like door clapping,
ringing phone, fall sound), sound type (impulsive or
harmonic), speaker identity, and high level information
such the lexical parts (words or sentences). The
required sensors capabilities are increasing: these
sensors become more and more complex, the digital
signal processing being a crucial component of them.
Extraction of high level information is possible today
in real time, thanks to many studies. The most difficult
task in digital signal processing for sound sensor is the
extraction of high-level information from an one-
dimensional signal. The actual challenges are the
multichannel processing, attenuation of environmental
noise, multispeaker speech recognition.

In this paper we describe a multichannel smart sound
sensor, which detect and identify a sound between
several predefined sound classes. The input of smart
sound sensor is composed of data collected by §
microphones and its output data is sent through a
network (CAN bus or Ethernet). For a real time
working purpose, the sound analysis is divided in three
steps: sound event detection for each sound channel,
fusion between simultaneously events and sound
identification. The extracted information is sent
through the network and if it is needed, the recorded
sound can be transferred for latter analysis by Ethernet
network, adapted for large data flow.

This smart sound sensor is a part of a medical
telemonitoring project with the aim of detecting

serious accidents. In these conditions we consider a
sound event, an impulsive sound (door clapping, step
sounds, dishes sounds, etc.) and a noise, a stationary
signal (environmental noise, white noise, water flow
noise, etc.). The proposed smart sensor is implemented
in real time with LabWindows/CVI software on a PC
[1]. Evaluation of the sensor has been carried out with
real environmental noise on a generated test set. An
evaluation methodology is proposed and discussed.

2. SOUND DATABASE

In order to test and validate the smart sound sensor we
have generated a sound corpus. It contains recordings
made in the Clips laboratory (15 % of the CD), he
files of "Sound Scene Database in Real Acoustizal
Environments" [2] (70 % of the CD) and files froni a
commercial CD (film effects, 15 % of the CD). Entire
corpus is composed of 3354 files; every sound is
sampled at 16 KHz and 44 KHz.

We have carried out 7 sound classes from the sound
corpus, for training the classification algorithm. The 7
sound classes are presented in the table 1.

The test set used for smart sound sensor validation is a
mix between the 7 sound classes and noise at different
SNR. The noise is recorded in an experimental
apartment named HIS. There are 7 files corresponding
to the 7 sound classes. Each file is constituted by all
sounds of the corresponding class inserted with silence
periods of random time length (1577 events to detect
and identify). For each sound, SNR can have a randcm
value either between 10dB and 20dB or between 0dB
and 40dB. For the first case, the SNR repartition is
uniform and for the second one, the SNR repartition
corresponds to real measures in the HIS apartment.
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Silence between consecutive sounds varies randomly

between 5 and 60 seconds. Total number of useful Bedeoont Liviagewom Kireten
sounds to be detected is 1577.
MI© M2
Table 1 - Sound class description ©
(Sound class N° files | N° Total | Alarm .
frames length

Door clapping 523 47398 379s |NO W50 Srover
Glass breaking 88 9338 75s | YES romning X e
Ringing phone 517 59188 474s | NO system \*/ \{/ N

Ste SOUndS 13 36480 292 S NO Hall M4Q  Yoisers
Screams 73 17509 140s | YES \ IHF Receiver | X h
Dishes sounds 163 7943 |[64s | YES i Y

Door lock 200 6050 49 NO Jv@o' _ i |L'g_LJ

3. SOUND SENSOR HARDWARE

As described in figures 1 & 2, our smart sound sensor
is composed of 5 microphones (omni-directional
condenser type), an acquisition card (National
Instruments PCI-6034E) plugged in the PC which is in
charge with the sound analysis software and a CAN
Bus adapter card. Condenser microphones are used
because of their small dimensions and of their
omnidirectional characteristics. Each microphone is
equipped with a conditioning card (instrumentation
amplifier and anti-aliasing filter). The sampling
frequency was fixed at 16 kHz because this value is
usual in speech recognition. In our medical
telemonitoring application the CAN bus is a dedicated
one which provides a big security. It is used to collect
information of other types of sensors useful in
perceptive space: medical sensors, localization
sensors. The CAN bus was chosen as the output
interface because its low cost, its good resistance to
harsh environments and its deterministic response in
collision case [3]. But CAN bus speed is too low for
sound wave transmission; in this case it must be
replaced by standard Ethernet network.

For sound sample acquisition, low-level functions are
used in order to drive the acquisition card in real time.
The detected events are saved on PC (on hard-disk) and
sent through the Ethernet network. Simultaneously, an
history of detected events (detection time, detection
type) is recorded in a text file. The abnormal detected
signal is recorded in a standard Wave format (without
compression) and could be sent in the same format
through Ethernet network, if requested.
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Figure 1 - Smart Sound Sensor diagram
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Figure 2 - Smart Sound Sensor hardware

4. SOUND ANALYSIS SYSTEM

The sound analysis system has been divided in three
modules as shown in figure 3. The first and second
modules are making up the "First parallel task". The
third module is the "Second paraliel task™.

Channel | Channel 5

e - & % per -
¥ ¥
Sound Event detection Sound Event detection G
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Fusion of simultaneous Detections 2°
Sound classification 30
(between several sound classes)
¥

Alarm!

Figure 3 - Sound processing schema

The first module is processed on each channel in order
to detect a sound event and to extract it from signal
flow. The fusion module selects the best channel in the
case of a simultaneously event detection on several
channels. The channel with the highest SNR is chosen
from estimation of SNR made for each channel. These
two modules make up the "First Parallel Task".

The last step is the sound classification or "Second
Parallel Task". This module is receiving the sound event
extracted (output of "First Task") and it estimates the
most probable sound class. The proposed sensor
classifies the sound in one of the seven sound classes.

4.1 Sound detection and capture

The event detection aim is to find impulsive signals in
the noise and to extract them from the signal flow. Our
smart sensor must be capable to identify impulsive
signals like door clapping, dishes sounds, fall sounds
but also speech presence too, in a noisy environment.



The performances of the first module are very
important for the entire system because if an event is
lost, it is lost forever.

There are many techniques for sound detection: energy
threshold, statistical model {4], energy processing [5]
or wavelet processing [6]. We have validated three
detection algorithms proposed by Dufaux [7] on our
test set but the obtained performances for
environmental noise are not suitable. We have
proposed two other algorithms ([8] with better
performances either for environmental noise or for
water flow noise but not for the two cases.

A wavelet based event detection algorithm is proposed
in the following. Unlike Fast Fourier Transform,
Wavelet Transform is well adapted to signals that have
very localized features in the time-frequency space.
This transform is frequently used for signal detection
[8] and audio processing. We have chosen Daubechies
wavelets with 6 vanishing moments to compute
Disnete Wavelet Transform (DWT). A complete
orthonormal wavelet basis consists of scaling (s factor)
and translations {u delay) of the mother wavelet
function (), 2 function with finite energy and fast
decay. Continuous wavelet transform is defined by :

W (u,s) = }0 f(z)—j-? \P*(:Li]dt W

Ay

Wavelet Transform on a 512 sample frame
corresponding to a 32ms window allows good signal
enhancement in noisy conditions. Analyzed sounds are
impulsive and so, better enhanced by Wavelet
Transform, Discrete Wavelet Transform is applied on
the sampled data and its output forms a vector of the
same length with that of the signal (512). This vector
has a pyramidal structure and is compesed of 10
wavelet coefficients (figure 3).
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Figure 3 - Wavelet coefficients repartition

The algorithm (flowchart in figure 4) calculates the
energy of the 8, 9 and 10 wavelet coefficients (the
three higher order coefficients), as the significant
wavelet coefficients of the sounds to be detected are
rather high order.

The detection is achieved by applying a threshold on
the sum of energies of the three highest order wavelet
coefficients. The threshold is self-adjustable and
depends on the average of the 10 last energy values:
Th = k+0.E 4yerage - The used value of & coefficient is
1.2 in order to compensate the small variation of signal
around average. Overlap between two consecttive
analysis windows is 50%.
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Figure 4 - Flowchart of the wavelet-based algorithm

An example of sound detection achieved by adop:ing
the presented algorithm is shown in the figure 5. The
amplitude of the sound signal that contains a mix ure
between a ringing phone at 3.2 second and a water
flow noise at 0 dB of SNR can be seen in the tirst
window, in the figure 5, while the second wincow
shows the wavelet energy outlined in black and the
self-adjustable threshold in grey. The detection signal
presented in the third window shows clearly that the
algorithm detects the signal from noise despite their
close amplitudes.
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Figure § - Detection of a ringing mixed with water flow
noise at 0 dB of SNR with proposed algerithm

The presented algorithm detects only the signal
beginning and not the end. A first approach is to
consider a fix duration sound as detection outpit.
However, the sound classification system is very
sensitive to long silence parts. Therefore, we detect tie
end of the signal by applying the same algorithm on
the time-inverted signal.

The procedure used to realize everyday life sound
event detection and capture involves the following
steps: the output signal starts simultaneously with the
detection and lasts 7 seconds. Then, the signal is time
inverted and the detection algorithm is applied once
again. In the next step the detection of the end of the
signal is used to extract the sound (the output signal
has a variable length). This procedure is allowirg
classification algorithm to analyze only the typical part
of the detected signal.

4.2 Channels fusion

Event detection is continuously operating on each of
five audio inputs. According to figure 3, a fusion s
necessary between these 5 inputs in the aim of
choosing the best channel and implicitly, to localize
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the sound source, when multiple detections occur
simultaneously. We consider simultaneous detections
two or more detections occurring at less than 0.5
seconds after the first detection (the propagation time
and the algorithm structure determine this time).

In case of simultaneous detections, the best channel is
considered the one with the highest SNR. The SNR is
estimated for each channel like the ratio between
average sound power (1 second of signal after event
detection) and average noise power (1 second of signal
before event detection). The average noise power is
buffered continuously in memory. The output of fusion
module gives the event signal.

4.3 Sound classification

The classification module looks to identify the event
sound between predefined sound classes. This module
uses a Gaussian Mixture Model (GMM) method [9].
There are other possibilities for the classification:
HMM, Bayesian method and others but GMM
classification is easy to implement, procures comparable
performances and require low processing time.

This method evolves in two steps: a training step and an
identification one. Identification module is the only
module involved in real time constraints. Classification
does not use directly signal samples, but a vector of
acoustical parameters calculated on analysis windows.
The acoustical parameters are determined for. each
analysis window of 16ms with an overlap of 8ms.

The training is initiated for each class o, of signals from
sound corpus and gives a model containing the
characteristics of each Gaussian (1 < m < 4) of the class:
the likelihood m ,,, the mean vector i, the covariance
matrix and the inverse matrix E"k_m. These values are
achieved after 20 iterations of an "EM" algorithm
(Expectation Maximization) following a K-means
algorithm. The used matrices are diagonal. Each
extracted signal X is a series of n acoustical vectors x; of
p comporents. The parameters 7, ¢ and X have been
estimated during the training step. The membership
likelihood of a class o, for each acoustical vector is
calculated for all classes according to:

-

4 1 y
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The likelihood of the entire signal is obtained by
geometrical average:

p(Xfo, )= H plxfo,) @)

The signal X belongs to the class @, for which p(Xj®))
is maximum.
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4.4 Selection of Gaussian model number

The Bayesian Information Criterion (BIC) was used in
order to determine the optimal number of Gaussian
[10]. BIC criterion selects the model through the
maximization of integrated likelihood:
BIC, =-2L, +v, In(n), where L, is the

maximum of the logarithmic likelihood, equal to
log f (x

component number of model, v the number of free
parameters, n is the number of frames and 0 is
parameter space. The minimum value of BIC indicates
the best model order.

K ,9) (f is integrated likelihood), K the
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Figure 6 - BIC for 2, 3, 4, 5 and 8 Gaussian

The BIC criterion has been calculated for the sound
class with the smallest number of files, for 2, 3, 4, 5
and 8 Gaussian. The results showed in figure 6 are
obtained for 16 parameters MFCC. Analyzing these
results, a number of Gaussian between 3 and 5 seems
to correspond to the best sound modelling. A model
with 4 -Gaussian distributions has been chosen for
following tests.

4.5 Acoustical parameters

There are many types of acoustical parameters like
MFCC (Mel Frequencies Cepstral Coefficients), LFCC
(Linear Frequencies Cepstral Coefficients), LPC
(Linear Predictive Coefficients), LPCC (Linear
Predictive Cepstral Coefficients), ZCR (zero crossing
rate), RF (Roll-off point), Centroid, etc, but only few
of them are appropriate to the sound classification.

After a statistical study based on Fisher Discriminant
Ratio (FDR) and a wvalidation on a test set, a
combination of 16 MFCC with ZCR, RF and Centroid
has been chosen (error classification rate was 10 % on
a 1577 test set). MFCC are cepstral coefficients based
on triangular  filtered energy in different frequency
bands (Fourier Transform with a Mel frequency scale
followed by logarithm and Inverse Fourier Transform).
The ZCR is the number of crossings on time-domain
through zero-voltage. The RF measures the frequency
which delimits 95 % of the power spectrum, while the
Centroid is the frequency which divides the power
spectrum in two equal parts.

5. SMART SOUND SENSOR VALIDATION

5.1 Implementation

The whole sound analysis flow-chart (figure 3) is
implemented by a software written with



LabWindows/CVI on our smart audioc PC. This
software drives simultaneously the real time sound
acquisition on 5 channels at 16 kHz sample rate. The
acquisition is made by a double buffering of 2048
samples by channel. Between 2 acquisitions of 2048
samples, the event detection is made on each of 5
channels. In the same time the signal power is
calculated and stored into memory (this value is
necessary for SNR estimation).

In case of event detection the fusion module is
launched in order to select the best channel. The signal
of the selected channel is recorded on the hard disk (7
seconds after event detection). The number of selected
channel is shown on the software front panel, like
sound localization information.

Before launching a second event detection procedure,
the detected signal is time inverted in order to estimate
the signal end. After signal extraction at founded

I3 Détection

signal end, the classification algorithm is started up.
The most probable sound class is shown on the front
panel. All these modules are launched in a parallel task
in relation to real time sound acquisition task.

When a sound event is detected, the smart sound
sensor is emitting an information frame through the
CAN bus. The frame contains: date and time detec ion
(day, month, year, hour, minute, second, millisecor.ds)
and a character field. This character field is consist of:
the three most probable sound classes with their
corresponding likelihoods and the localization of the
sound event (the channel).

On the software front panel (figure 7) are shown the
signal of last detected event, the localization of ast
event (the room in our experimental apartment), a
chronological account of detected events, and, on
apartment plan, and the event localization once agzin.
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Figure 7 - Front panel of smart sensor. Detection of step and dish sounds

5.2 Coupling between detection and classification

The detection of the end of the signal can have a great
influence on classification performances. In order to
evaluate the influence of the coupling between the two
parallel tasks (detection and classification) a study has
been conducted on the same test set. 16 MFCC coupled
with ZCR, RF and Centroid are the acoustical
parameters. The Error classification rate (ECR) is
calculated for the sound obtained with an ideal
detection (according to corpus data) and for the sounds
coming from automatic detection algorithm. The GMM
training is made on the pure sounds with a leave-one
out protocol. The results are presented in table 2.

The obtained ECR for ideal detection confirm our
results of classification in noise conditions. The results
oktained with a fixed length of extracted signals are not
acceptable. The error introduced by non-adapted
coupling is approximately 46%. The signal end

detection improves significantly the classification
performances. False detections in only noise sigral
parts may explain that ECR is greater for real detection
with length estimation than ideal detection.

Table 2 - Coupling results

ECR for ECR for
SNRe&[10~20] | SNRe[0-40]
dB dB

Ideal Detection &
Real length of 21.5% 22.7%
signals
Automatic
Detection & length 277 % 258 %
estimation
Automatic
Deteciion & fix 67.8 % 69 %
length of signals
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5.3 Proposed methodology for sensor evaluation

The evaluation of the smart sound sensor for a
telemedicine application must take into account
different characteristics of both detection and
classification modules. For detection module we define
a Good detection (G) as an event detection occurring
between 0.5 seconds before signal start and signal end.
A Missed Detection (MD) is a lack of detection in the
previously defined time interval and a False Alarm
(FA) is a detection occurring outside of this time
interval.

For classification module, the 7 sound classes are
divided in two categories: class with alarm (4) and class

without alarm ( A ). Possible errors are:

e Error without consequence (W) = a sound of a
class with alarm is classified in another class with
alarm or a sound of a class without alarm is
classified in another class without alarm

e Missed detection (MD) = a sound of a class with
alarm is classified in a class without alarm

e False alarm (FA) = a sound of a class without
alarm is classified in a class with alarm

CGlobal False
Aarmes Rate

»@__. Sound iv@

Signal Sound event
|»{ detection

system

classification

° system
& 0
Lilohal _’

Minsed Petections Rute

Figure 8 - Global False Alarm Rate and Global Missed
Detection Rate representation

All errors for the two tasks are illustrated in the figure
8. The proposed Global Missed Detection Rate
(GMDR) and the Global False Alarm Rate (GFAR) are

defined in equations (GMDR) and (GFAR) in

accordance with figure 8 as follows.

GMDR= MDpeteer+ MDclass i 4
Total Number of event detections @

GFA& FA‘IUSS (5)

Totalnumberof eventdetectionstF Atas

6. RESULTS

The results of smart sound sensor evaluation on the test
set are presented in the table 3. Test set contains a
mixture between real noise (recorded in the test
apartment) and everyday life sounds. These results were
obtained by using wavelet-based algorithm for
detection of the start and of the end of signal. The
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classification module was achieved with 4 Gaussian
models and 16 MFCC coupled with energy, zero
crossing rate, roll-off point and centroid. For
classification module a Jeave one out protocol has been
used: the model of each class is trained on all the
signals of the class, excepting one. Next, each model is
tested on the remaining sounds of all classes. The whole
process is iterated for all detected files.

There are not many missed detections, GMDR = 3 %
for the two test sets. This value can be considered as
acceptable for our application because the sound
extraction system will be coupled with other sensors.
False alarms remain below 15 %, GFAR ~ 12 % in the
same conditions.

Table 3 - Sound system performances on 1577 tests

SNR&[10,20] dB | SNRe[0,40] dB

GMDR 3% 3 %

GFAR 12.3 % 12.7 %

5. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented a multichannel smart
sound sensor which detects sound events and identifies
sounds among 7 predefined sound classes. The smart
sound sensor was designed to work in the framework of
a medical telemonitoring application. = We have
proposed an evaluation methodology in relation with
the application. The obtained results in real noisy
environments may be acceptable.

Actually, the sensor is composed of the data acquisition
card plugged in a PC. To make it physically
independent, we can implement the sensor system
inside the digital signal processor card. We have chosen
to test the sensor algorithms using a PC because of the
facilities in terms of implementation and verification.
This sensor application was the telemedicine field, but
it can be generalized to the perceptive spaces.

ACKNOWLEDGEMENT

This work is a part of the DESDHIS-ACI "Technologies
for Health" project of the French Research Ministry. This
project is a collaboration between the Center MICA
(Hanoi - Vietnam), the CLIPS laboratory and the TIMC
laboratory (Grenoble - France).

REFERENCES

[11 N.I, “LabWindows/CVI User Manual”, National
Instruments Corporation, December 1999.

[2] Real World Computing Partnership, “CD - Sound
scene database in real acoustical environments,”
hittp://tosa.mri.co.jp/sounddb/indexe.htm, 1998-2001.

[3] Can Bus site, “http,//www.can.bosh.com”, 2003

[4] Takeshi Yamada & Narimasa Watanabe, “Voice
activity detection using non-speech models and
HMM composition,” in Workshop on Hands-free
Speech Communication, Tokyo, Japan, 2001.



(5]

(6]

A. Dufaux, Detection and Recognition of Impulsive
Sounds Signals, Ph.D. thesis, Faculté des sciences
de I’Université de Neuchatel, 2001.

L. Daudet, Représentations structurelles de signaux
audiophoniques - Méthodes hybrides pour des
applications a la compression, PhD. thesis,
Marseille, 2000.

M. Vacher, D. Istrate, L. Besacier, E. Castelli &
JF. Serignat, “Smart audio sensor for
telemedicine,” in Smart Objects Conference 2003,
Grenoble, France, 15-17 May 2003.

FK. Lam & CXK. Leung, “Ultrasonic detection
using wideband discret wavelet transform”, in
IEEE TENCON, August 2001, vol2, pp. 890-893.

D. Reynolds, *“Speaker identification and
verification using Gaussian mixture speaker
models,” in Workshop on Automatic Speaker
Recognition, Identification and Verification,
Martigny, Switzerland, April 1994, pp. 27-30.

(10] G. Schwarz, “Estimating the dimension of a model”,

Annals of Statistics, vol.6, pp. 461-464, 1978.

243



