• 제목/요약/키워드: roll based manufacturing

검색결과 67건 처리시간 0.025초

R2R 그라비어 오프-셋 인쇄공정에서의 동기화 오차에 대한 분석 (Analysis of Synchronization Error in R2R Gravure Off-set Printing Process)

  • 이택민;김인영;박상호;김봉민
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1141-1145
    • /
    • 2011
  • Recently, there are many issues about R2R printing technique for mass production of electronic devices. Among the various Roll-to-roll based printing techniques such as gravure, off-set, flexo and so on, "Gravure off-set printing technique" has an advantage of higher printing resolution. The printing unit of gravure off-set printing technique usually consists of plate roll, blanket roll and impressure roll whose. Linear velocities should be synchronized each other for fine pattern printing. However, roller's manufacturing error and printing variations such as pringting pressure, printing speed, roll stroke and so on actually affected their synchronization anf thus the quality of fine fattern. In this paper, we analyzed the effective of synchronization error on printing quality. Also, this paper reviews the relative motion with each roll. And, this paper studys the synchronization error about its generation problem.

패턴 형상, 인쇄 및 건조 조건이 전도성 잉크를 이용한 그라비아 인쇄 결과물의 성능에 미치는 영향 (Influence of Micro Pattern Geometry and Printing and Curing Conditions in Gravure Printing on Printing Performance When Using Conductive Ink)

  • 안병준;한경준;고성림
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.263-271
    • /
    • 2010
  • e-Printing은 전통 인쇄 기술을 기반으로 하는 전자소자를 생산하기위한 새로운 기술이다. 이러한 인쇄 전자 소자들은 가격을 낮추기 위하여 대면적 인쇄가 요구된다. 이렇듯 원가를 절감하며 전자 소자에 요구되는 정밀도를 충족하기 위하여 롤투롤(Roll to Roll) 방식의 그라비아(Gravure) 인쇄 시스템이 하나의 대안으로 제시된다. 그라비아 인쇄에는 인쇄 전자 소자의 성능에 영향을 미치는 요소들이 매우 많다 : 건조 방식, 건조 온도, 운전 장력, 인쇄 속도, 잉크 점도, 잉크의 전도성, 망점 및 패턴의 정밀도. 이상에서 언급한 요소들은 각각 매우 밀접한 관계를 가지고 있다. 따라서 인쇄 전자소자의 성능을 향상시키기 위해서는 반듯이 인쇄 적합조건을 찾아야만 한다. 본 논문에서는, 전도성 잉크 및 그라이아 인쇄기를 사용하여 다양한 요소의 조건을 변화하여 패턴(선 및 면)을 인쇄하였으며, 각 인쇄 요소의 변화가 인쇄 전자소자의 성능에 미치는 영향에 관하여 분석 및 연구를 수행하였다.

롤 다이 성형공정을 이용한 변속기 허브 클러치 제조 (Roll Die Forming Process for Manufacturing Clutch Hub in Automotive Transmission)

  • 고대훈;이상곤;권용남;김상우;이현석;박은수;김병민;고대철
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.154-159
    • /
    • 2011
  • The roll die forming (RDF) process is a new manufacturing technique for producing gear parts such as clutch drum and clutch hub in automotive transmission. In the RDF process, the material is deformed by a roll installed on a die set. Excellent productivity, low forming load and improved dimensional accuracy have quantitatively been shown to be the benefits of the RDF. In this study, the RDF process is applied to manufacture a clutch hub with a gear shaped part. A finite element (FE) analysis was performed in order to investigate the material strain field and dimension of the final product. Based on the result of the FE analysis, a RDF experiment was performed and the dimensional accuracy of the final product was validated. This work demonstrates that RDF is a process capable of producing a sound clutch hub.

롤(roll) 형태의 출력방식을 활용하는 3D 프린팅 가방 개발 (Development of 3D Printed Bags Using Roll-Type Printing Method)

  • 이지원;전재훈
    • 한국의류산업학회지
    • /
    • 제24권5호
    • /
    • pp.505-518
    • /
    • 2022
  • 3D printing technology, also known as additive manufacturing(AM), has not been actively used in the clothing industry despite its potential for economic, environmental, and labor efficiency. Therefore, this study aims to propose a new 3D printing method for the clothing industry, which will be more readily accessible. This roll-type printing method can print wide-sized patterns at once using a 3D modeling program and a FDM 3D printer and help overcome the limitations imposed by the size of the printer. Then, to demonstrate the practical application cases of this printing method, bags of three designs were developed. Prior to product development, a thickness test was performed for stable printing using TPU(Thermoplastic Poly Urethane) filament, and a thickness of 0.45 mm was found to be most suitable for it. Next, the time efficiency test showed that the roll-type printing method takes less time compared to the general printing method in printing wide-sized patterns. Based on these tests, three bags, , and , were developed to confirm the suitability of the roll-type printing method for product development. The advantages of 3D roll-type printing can lie in overcoming of the spatial limitation, and the environmental sustainability as it can reduce waste from the production process. This study is significant in that it presents a new 3D printing method to improve the space limitations and time inefficiency of 3D printers.

초고강도 범퍼 빔의 롤 포밍 공정을 위한 플라워 패턴 설계 (Design of Flower Pattern in Roll Forming Process for Ultra High Strength Bumper Beam)

  • 차태원;김재홍;김근호;김병민
    • 소성∙가공
    • /
    • 제25권5호
    • /
    • pp.319-324
    • /
    • 2016
  • Recently, the roll forming process is one of the most widely used processes for manufacturing automotive part. In this study, flower patterns of roll forming process were designed to manufacture an ultra high strength bumper beam using the finite element analysis. Three types of flower patterns such as the basic type, the rotation type and the split type were designed based on the constant arc length forming method using the design software, UBECO Profil. Finite element analysis was performed to evaluate the suitability of designed flower patterns in terms of the longitudinal strain and the bow defect. The analytical results show that the split type represents more uniform longitudinal strain distributions and a good dimensional accuracy than other types of flower patterns.

터빈 블레이드 균형화를 위한 발견적 기법 (A Heuristic Algorithm for a Turbine-Blade-Balancing Problem)

  • 최원준
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.193-196
    • /
    • 2000
  • In the turbine-blade manufacturing industry, turbine-blades are machined and then are assembled to form a circular roll of blades. The roll of blades should be balanced as much as possible, since otherwise the efficiency of the turbine generator might degrade. We propose a heuristic method for balancing blades based on the number partitioning algorithm. The proposed method outperformed existing methods remarkably in terms of the accuracy with a negligible increase in the running time.

  • PDF

심리스 파이프 제조를 위한 일롱게이션 공정의 유한요소해석 (Finite Element Analysis of an Elongation Rolling Process for Manufacturing Seamless Pipes)

  • 정승현;신유인;송철기
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.923-928
    • /
    • 2014
  • Elongation rolling process is an intermediate process to make the uniform thickness and uniform surface roughness during producing seamless pipes. The thickness and surface roughness of seamless pipes are generally affected by the distance of rolls and guide shoes, the roll shape, and its cross angle. In this study, finite element analysis for shape forming process is based on the analysis model of elongation rolling mill with guide shoes. This paper shows how the cross angle of the roll, the rolling rpm, and the distance of the guide shoe influence on the outer diameter and the thickness of seamless pipes. The rolling rpm did not give much influence on outer diameter.

피스톤 링 제조용 선재의 다단 형상 압연공정 설계 (Process Design of Multi-Pass Shape Rolling for Manufacturing Piston Ring Wire)

  • 김남진;이경훈;임상혁;이제문;김병민
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2017
  • Multi-pass shape rolling is performed to produce long products of arbitrary cross-sectional shapes. In the past, the multi-pass shape rolling process has been designed by the trial and error method or the experience of experts based on the empirical approach. Particularly, the design of roll caliber in shape rolling is important to improve product quality and dimensional accuracy. In this paper, the caliber design and pass schedule of multi-pass shape rolling were proposed for manufacturing piston ring wire. In order to design roll caliber, major shape parameter and dimension was determined by analysis of various caliber design. FE-simulation was conducted to verify effectiveness of proposed process design. At first, forming simulation was performed to predict shape of the product. Then, fracture of the wire was evaluated by critical damage value using normalized Cockcroft-Latham criteria. The experiment was carried out and the results are within the allowable tolerance.

CFD 해석을 이용한 롤투롤 슬롯-다이 내부 유동 분석 및 최적화 (Analysis and Optimization on Inside Flows of Fluid in Roll-to-Roll Slot-Die Nozzle by CFD Simulation)

  • 김성용;이창우
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.611-616
    • /
    • 2016
  • Computational fluid dynamic simulation based on the ABAQUS software was conducted to observe the inside flow of slot-die nozzle. The slot-die nozzle was modeled as 3-dimensional structure and three significant parameters were determined: inlet velocity of fluid, reservoir angles, number of strips none of which have been mentioned previously in the literature. The design of experiment, full factorial analysis was performed within determined design and process levels. The simulation result shows the inlet fluid velocity is most significant factor for the flows of inside nozzle. As an interaction effect, reservoir angle is closely related with number of strip that should address when the nozzle is designed. Moreover, the optimized values of each determined parameter were obtained as 35 mm/s of inlet velocity, 3 of strip numbers, and $22^{\circ}$ of reservoir angles. Based on these parameters, the outlet velocity was obtained as 0.53% of outlet uniformity which is improved from 8.67% of nominal results.