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A Heuristic¢ Algorithm for a Turbine-Blade-Balancing Problem

Abstract

In the turbine-blade manufacturing industry, turbine-blades are machined and then are assembled to form a circular
roll of blades. The roll of blades should be balanced as much as possible, since otherwise the efficiency of the turbine
generator might degrade. We propose a heuristic method for balancing blades based on the number partitioning
atgorithm. The proposed method outperformed existing methods remarkably in terms of the accuracy with a negligible

increase in the running time.

1. INTRODUCTION

A steam turbine may be defined as a form of the
heat engine in which the energy of the steam is
transformed into kinetic energy by means of expansion
through nozzles, and the kinetic energy of the resulting jet
is in turn converted into force doing work on rings of
blades mounted on a rotating part.

In the turbine-blade manufacturing industry,
turbine-blades are machined and then are assembled to
form a circular roll of blades. The roll of blades should
be balanced as much as possible, since otherwise the
efficiency of the turbine generator might be damaged.
However, the blades to be assembled into the same roll are
not normally identical in weights and lengths, which
makes the balancing problem tedious and difficult.

In this paper, we study methods for balancing the
weights of the rotating blades. In Section 2, we
formulate the blade-balancing problem into a mixed-
integer programming problem. In Section 3, we review
the literature on topics of the turbine blade balancing
problem. In Section 4, we propose a heuristic method for
solving the blade-balancing problem, followed by the
exposition of the computational experiences in Section 5.

2. PROBLEM-FORMULATION

Suppose we are given a set of n blades whose
weights are known. The problem which we should solve is
to determine the location of each blade around the rotor
axis so as to minimize the residual unbalance (its
definition will be given later) in weight distribution. For
expository simplicity, we assume that the centers of
gravity of all blades are at the same distance » from the
center of the rotor axis. We define the following notation:

n: total number of blades, equivalently total number
of locations

i: blade index (i=1,2,...,n)

J: location index (7=1,2,...,n)
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w;: weight of blade i.
r: distance between the center of gravity of a blade
and the center of rotor axis.

Then the balancing problem can be defined as
follows: Given n blades with weight w; and a circle of
radius r with a equally spaced locations on its periphery,
find an assignment of the blades to the locations that
minimizes residual unbalance about the center. The
residual unbalance is the magnitude of the vector sum of
the moments created by the individual blades about the
center.

Without loss of generality, we assume that » is
even. For convenience, we assume a coordinate system
in which the origin is at the center of the circle and the
positive x axis goes through one of the » locations as in
Figure 1. The locations are numbered in
counterclockwise order starting with the one coincident
with the positive x axis. So, the coordinates of location i
are

[rcos(w),mm(wn

Figure 1. Blade Balancing Problem

Decision variables x;; are defined as

_ {1 if blade is assigned to location j
i

0 otherwise
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Let interchange and three-way interchange algorithms. They
found that pairwise interchange heuristic was most
2(i-1)r (2(i-1)r efficient.
C; =W; ®rcos ) d; =w, ersin o Amiouny, Bartholdi and Vande Vate (1997) developed

.Now, for any solution x we can determine the moment

vector (m,,m,) of the moment weight as

n n
m, = E E CyXy

(Eq.- 1)
=1 =l
n n

m, =" dyx, (Eq. 2)
i1 j=l

Then the balancing problem can be stated as follows:

Minimize \Jm}? + m}z} (Eq.3)
subject to
h n
m, = ch’jx'j (Eq. 4)
i=1 j=1
14 n
my =22 dyxy (ka3
=l j=1
n
Nxy=l, i=1,2...n, (.6
=
n
ZXU=7; I'=7,2,...,n, (Eq. 7)
=1

Equations 6 & 7 are assignment constraints for blades
and locations. Equations 4 & 5 are definitions of
moments.

3. LITERATURE REVIEW

The turbine blade balancing problem has been studied
by several authors. Mosevich (1986) presented an
algorithm which consisted of selecting the best of a large
number of randomly generated solutions. Laporte and
Mercure (1988) modeled the problem as a quadratic
assignment problem and presented a solution procedure
based on Or’s TSP heuristic which outperformed that of
Mosevich. Fathi and Ginjupalli (1993) also modeled the
problem as a quadratic assignment problem and two
families of heuristics for it. The first family of heuristics
called the Placement Heuristic places the blades in order
of weight — the heaviest blade first — choosing for each
blade the available location that brings the resulting center
of gravity as close as possible to the center of rotor axis.
The second family of heuristics called the Rotational
Heuristic divides the blades into equal-sized subsets, finds
good sequences for the smaller problems of balancing with
only the blades in each subset and then interleaves the
sequences. Mason and Roénngvist (1997) tested
several local search techniques including pairwise
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several constructive heuristics for the problem of which
two seem to dominate, Ordinal Pairing and Greedy Pairing
Both algorithms begin by sorting the blades from heaviest
to lightest. Next after forming the pairs of consecutive
blades in the sorted list, sort the pairs in the descending
order of the difference in weights in a pair. Then pairs in
the finally sorted list are placed across from each other on
the rotor axis. The two algorithms differ as to how the
locations of each pair of blades are determined. Ordinal
pairing places the blades in a fixed pattern. Greedy
pairing places the blades by a greedy algorithm. For
each pair, all possible open positions on the circle are
examined, and the position which yields the center of
gravity closest to the center of the circle is chosen. Ordinal
Pairing requires very little computation time and produces
good results while Greedy Pairing requires more
computation but gives better performance.

Choi et al. (1999) presented several heuristic methods
for the turbine blade balancing problem formulated as a
minimax unbalance problem.

Storer(1999) proposed a heuristic which uses an
embedded number partitioning algorithm. Initially, the
blades are placed in random locations on the circle. Next
the center of gravity around “the X-axis” is balanced, and
then around “the Y-axis.” To balance the center of mass
around an axis, pairs of weights which are symmetric with
respect to the axis as shown in Figure 2 are considered.
Next a single number d; for each pair of weights is created
(=1 to n/2), as illustrated in Figure 3. This number d; is
the center of gravity of the pair with respect to the axis of
symmetry. Next a number partitioning algorithm is
applied to the set {dy,d>,..., d,»} of the pairwise center of
mass. The differencing algorithm proposed by
Karmarkar and Karp (1982) was applied to solve the
number partitioning problem. The result of partitioning
is two sets of pairs. The final step is to arbitrarily select
one of the two sets of pairs, and interchange the weights of
each pair in that set. The result will be that the center of
gravity with respect to the axis of symmetry will be nearly
balanced and equal to the objective function found by the
number partitioning algorithm. The final step of the
algorithm is to balance the center of gravity with respect to
the second perpendicular (¥) axis of symmetry. The
same algorithm as for the X-axis is applied.

Figure 2 Weight Pairs Symmetric with Respect to the X
Axis in Storer’s Algorithm
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d=jw-w]*sin(s )

Figure 3 Calculation of d values

We will present a heuristic which is based on Storer’s
heuristic.

4. HEURSITICS

The proposed algorithm begins with an arbitrary
placement of blades with centroid (W,,/¥,), and improves
the solution iteratively.

While Storer’s algorithm first balances the center of
gravity around “the X-axis”, we deliberately select the axis
around which the center of gravity will be balanced. The
axis will be chosen among axes with angles

(i—])ﬂ' i=l,

, iy AL
n

i—-lr

(We will call the axis with angle ( ) by Axis i, for
n

i=1,...,n or say the axis number is i.) We choose the axis

that is nearest to the separating line perpendicular to the

line segment linking the center (0,0) and the centroid

(Wx , Wy) as illustrated in Figure 4.

W)

o
N

Separating
Line

Figure 4 The separating line perpendicular to the line
segment (0,0)-(W,IV,).

To balance the center of mass around the selected axis,
pairs of weights that are symmetric with respect to the axis
as shown in Figures 5 and 6 are considered. When the
axis number is even, the axis passes between two pairs,
but when the axis number is odd, the axis lies on top of
two blade locations.

First, each symmetric pair is arranged so that the
heavier weight in each pair is on the same side of the axis
(for simplicity of the algorithm description). Next a
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single number d; for each pair of weights is created. This
number d; is the center of gravity of the pair with respect
to the axis of symmetry. That is,
d; = difference in weights of the pair X sin(difference in
angles of the pair / 2).

Next a number partitioning algorithm is applied to the
set {d;} of the pairwise centers of mass. The result of
partitioning is two sets of pairs. The final step is to
arbitrarily select one of the two sets of pairs, and
interchange the weights of each pair in that set. The
result will be that the center of gravity with respect to the
axis of symmetry will be nearly balanced and equal to the
objective function found by the number partitioning
algorithm.

AXxis F

Figure 5 Pairing in Case of Axis i (i is even)

Axis £

Figure 6 Pairing in Case of Axis i (i is odd)

The rationale behind the selection of the axis is that the
nearer the axis is to the perpendicular separating line, the
larger the unbalance of the existing placement with respect
to the axis is, so that improvement from the existing
placement may be more likely.

After applying the above process, we get a new
placement and update the centroid of the placement.
Then we select the axis around which the center of gravity
will be balanced. If the solution was improved and the
newly selected axis is different from the previous axis,
then we repeat the above process. We call the newly
selected axis the anchor axis. Initially the anchor axis is
the first selected axis. Otherwise, we explore other
pairings by selecting an axis next to the current axis and
then repeat the above process. If we fail again to
improve the solution, then we try another untried axis
nearest to the anchor axis. The algorithm stops when all
axes are tried but the anchor axis is not changed.

We call this proposed algorithm the Iterative Method.
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5. COMPUTATIONAL EXPERIENCES

Following Amiouny, Bartholdi, and Vande Vate (1997),
we generated blade weights from a Normal distribution
with a mean of 100 and standard deviation of 5/3. We
generated problems over a range of sizes from 20 blades to
200 blades. Again following Amiouny, Bartholdi, and
Vande Vate (1997), we assume that the circle radius is 100
and the objective function is the Euclidean distance
between the center of gravity and the center of the circle.
For each problem size, 1000 instances were generated.
Four algorithms were compared, Ordinal Pairing, Pairwise
Interchange Method, Storer’s Method, and the Iterative
Method.

Figure 7 shows the objective function value averaged
over 1,000 problem instances for each problem size.
Storer’s Method outperformed the Ordinal Pairing Method
and 2-Swap Methad for most of cases. Considering the
fact that the Pairwise Interchange Method was one of the
best methods in the open literature (Mason and Ronnqvist
(1997)) before Storer’s Method was proposed, we can say
that Storer’s Method works very nicely for the turbine
blade balancing problem. However, the Iterative Method
improves on Storer’s Method by up to three orders of
magnitude with a negligible increase in the running time
in the practical sense. For N=200, the Iterative Method
took an average of 0.16 seconds per problem instance on a
PC with Pentium II processor.
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Fig

ure 7 Comparison of the Performance of Ordinal Pairing,
Pairwise Interchange, Storer’s, and Iterative Method.

Another point to note is that the quality of the final
solution from the Iterative Method was robust with respect
to the starting solution. We tried using solutions from
Ordinal Pairing, and from the Interchange Method as the
starting placement. However, there was no indication
that the resulting final solutions are better than those from
arbitrary starting placements.
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6. CONCLUSIONS

In this paper, we proposed an algorithm for a turbine
blade balancing problem. It turned out that the proposed
algorithm improved on the state-of-art method by up to
three orders of magnitude with a negligible increase in the
running time.

Investigation of other pairing schemes and other search
heuristics such as a problem-space search heuristic
remains as further research topics.
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