• Title/Summary/Keyword: role strain

Search Result 746, Processing Time 0.024 seconds

Comparison of Karasek's Job Content Questionnaire and Korea Occupational Stress Scale (Karasek의 Job Content Questionnaire와 Korea Occupational Stress Scale의 비교 연구)

  • Lee, Jong-Bin;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • According to the report of the WHO, workers have been exposed to much job strain such as job load, responsibility, role, interpersonal conflict etc. In Korea, studies on job strain started to become active from 1990s and now hundreds of studies are actively under going or publishing so that the studies are contributing to development and improvement of job strain. Representative measurement models of job strain are Job Strain Model of Karasek, Job Stress Model of NOISH, Korea Occupational Stress Scale, JSQ(Job Stress Questionnaire), K-OSI(Korea Version of Occupational Stress Inventory) etc. (Lee Kwan-Suk, 2012 ; KOSHA, 2003). Among them, Job Strain Model of Karasek had been loved by many researchers of job strain before Korea Occupational Stress Scale was developed. Job Strain Model of Karasek had been fitted to Korean style and then, used to analyze job strain of Korean people so that this Scale highly contributed to seeking relationship with cardiovascular disease, musculoskeletal disease caused by job, smoking, drug, alcohol poisoning, and pulse(Lee Kwan-Suk, 2012). But as this Model was studied and developed based on foreign culture and life pattern, a model fit to Korea was developed to measure job strain for Korean people, which is Korea Occupational Stress Scale now most frequently used in measuring job strain. Accordingly, after this study made questionnaire survey about same population using the two methods used most frequently in measuring job strain, the study investigated what features appeared, what correlations appear between two models, and comparatively analyzed characteristics each independent and dependent variable. Based on this, the study aimed to exactly express job strain of Korean people. The subjects of the study were a population of 233, and Karasek's Questionnaire and KOSS's Questionnaire were surveyed at the same time. The results were analyzed by statistical program to obtain significant difference between two models. Four particular groups were divided with Job Strain Model of Karasek and the four particular groups were measured with Korea Occupational Stress Scale. And job strain come from combination of two models was measured, with which new comparative analysis method was suggested.

A Human Fungal Pathogen Cryptococcus neoformans Expresses Three Distinct Iron Permease Homologs

  • Han, Kyunghwan;Do, Eunsoo;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1644-1652
    • /
    • 2012
  • Iron plays a key role in host-pathogen interactions. Microbial pathogens require iron for survival and virulence, whereas mammalian hosts sequester and withhold iron as a means of nutritional immunity. We previously identified two paralogous genes, CFT1 and CFT2, which encode homologs of a fungal iron permease, Cft1 and Cft2, respectively, in the human fungal pathogen Cryptococcus neoformans. Cft1 was shown to play a role in the high-affinity reductive iron uptake system, and was required for transferrin utilization and full virulence in mammalian hosts. However, no role of Cft2 has been suggested yet. Here, we identified the third gene, CFT3, that produces an additional fungal iron permease homolog in C. neoformans, and we also generated the cft3 mutant for functional characterization. We aimed to reveal distinct functions of Cft1, Cft2 and Cft3 by analyzing phenotypes of the mutants lacking CFT1, CFT2 and CFT3, respectively. The endogenous promoter of CFT1, CFT2 and CFT3 was replaced with the inducible GAL7 promoter in the wild-type strain or in the cft1 mutant for gain-of-function analysis. Using these strains, we were able to find that CFT2 is required for growth in low-iron conditions in the absence of CFT1 and that overexpression of CFT2 compensates for deficiency of the cft1 mutant in iron uptake and various cellular stress conditions. However, unlike CFT2, no clear phenotypic characteristic of the cft3 mutant and the strain overexpressing CFT3 was observed. Overall, our data suggested a redundant role of Cft2 in the high-affinity iron uptake and stress responses in C. neoformans.

A Plant Growth-Promoting Pseudomonas fluorescens GL20: Mechanism for Disease Suppression, Outer Membrane Receptors for Ferric Siderophore, and Genetic Improvement for Increased Biocontrol Efficacy

  • LIM, HO SEONG;JUNG MOK LEE;SANG DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2002
  • Pseudomonas fluorescens GL20 is a plant growth-promoting rhizobacterium that produces a large amount of hydroxamate siderophore under iron-limited conditions. The strain GL20 considerably inhibited the spore germination and hyphal growth of a plant pathogenic fungus, Fusarium solani, when iron was limited, significantly suppressed the root-rot disease on beans caused by F. solani, and enhanced the plant growth. The mechanism for the beneficial effect of strain GL20 on the disease suppression was due to the siderophore production, evidenced by mutant strains derived from the strain. Analysis of the outer membrane protein profile revealed that the growth of strain GL20 induced the synthesis of specific iron-regulated outer membrane proteins with molecular masses of 85- and 90 kDa as the high-affinity receptors for the ferric siderophore. In addition, a cross-feeding assay revealed the presence of multiple inducible receptors for heterologous siderophores in the strain. In order to induce increased efficacy and potential in biological control of plant disease, a siderophore-overproducing mutant, GL20-S207, was prepared by NTG mutagenesis. The mutant GL20-S207 produced nearly 2.3 times more siderophore than the parent strain. In pot trials of beans with F. solani, the mutant increased plant growth up to 1.5 times compared with that of the parent strain. These results suggest that the plant growth-promoting P. fluorescens GL20 and the genetically bred P. fluorescens GL20-S207 can play an important role in the biological control of soil-borne plant diseases in the rhizosphere.

Tensile Stress-Strain Relation of ECC (Engineered Cementitious Composite) Accounting for Bridging Curve (실제 균열면응력-변위 곡선을 고려한 ECC의 1축 인장거동 관계)

  • Kim, Jeong-Su;Lee, Bang Yeon;Kwon, Seong-Hee;Kim, Jin-Keun;Kim, Yun Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.933-936
    • /
    • 2008
  • An engineered cementitious composite (Engineered Cementitious Composite) had been developed in previous study. Theoretical prediction of the tensile stress-strain relation of ECC is important in providing the material constitutive relation necessary for designing structural members. But, few studies have been reported with regard to predicting the tensile stress-strain relation of ECC. Prediction of the tensile stress-strain relation of ECC accounting for actual bridging curve, such as fiber dispersion is needed. The present study extends the work as developed by Kanda et al., by modeling the bridging curve, accounting for fiber dispersion, the degree of matrix spalling, and fiber rupture to predict the tensile stress-strain relation of ECC. The role of material variation in the bridging curve, such as number of effective fiber actually involved in the bridging capacity and how it affects the multiple cracking process is discussed. The approach for formulating the tensile stress-strain relation is discussed next, where the procedure for obtaining the necessary parameters, such as the crack spacing, is presented. Finally, the predicted stress-strain relation will be validated with experimental tests results.

  • PDF

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

Antimutagenicity of Phellinus linteus in Salmonella typhimurium

  • Shon, Yun-Hee;Lee, Jae-Sung;Lee, Hang-Woo;Kim, Joong-Wan;Lim, Jong-Kook;Kim, Cheorl-Ho;Nam, Kyung-Soo
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.136-140
    • /
    • 1999
  • The mutagenicities and antimutagenicities of butanol (PL I) and water (PL II) extracts from the filtrate of the cultured broth of Phellinus linteus were examined using the Ames/Salmonella test. No mutagenic activity of PL I and PL II was found in Salmonella typhimurium strains TA98 and TA100, either with or without S9 activation. In contrast, PL I and PL II showed inhibitory effects on the mutagenic activities induced by the directly-acting mutagens, 4-nitro-o-phenylenediamine (NPD) using the tester strain TA98 and sodium azide (NaN3) using the tester strain TA 100 in the absence of S9 mix. PLI and PL II also showed inhibitory effects on the mutagenicities of the indirectly-acting mutagens, 2-aminofluorene (2-AF) using the tester strain TA98 and benzo[a]pyrene (B[a]P) using the tester strain TA 100 in the presence of S9. These results suggest that P. linteus has an antimutagenic activity and may play a role in the prevention of cancer.

  • PDF

Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression

  • Yang, Fan;Gong, Yanfen;Liu, Gang;Zhao, Shengming;Wang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1101-1107
    • /
    • 2015
  • The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

Effect of Die-upset Process on Magnetic Properties and Deformation Behavior of Nanostructured Nd-Fe-B Magnets

  • Zhao, R.;Zhang, W.C.;Li, J.J.;Wang, H.J.;Zhu, M.G.;Li, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.294-299
    • /
    • 2011
  • Nd-Fe-B high performance magnets were prepared by die-upset forging. The effects of the deformation parameters on magnetic properties and flow stress were studied. Deformation temperatures in the range of $600{\sim}900^{\circ}C$ enable to achieve an effective anisotropy and temperature $800^{\circ}C$ proves to be suitable for deformation of Nd-Fe-B magnets. The amount of c-axis alignment along the press direction seems to depend on the amount of deformation and a saturation behavior is shown at deformation ratio of 75%. Magnetic properties are also related to strain rate, and maximum energy product is attained at an optimum strain rate of ${\varphi}=1{\times}10^{-2}s^{-1}$. By analyzing the relationship of stress and strain at different deformation temperature during die-upset forging process, deformation behavior of Nd-Fe-B magnets was studied and parameters for describing plastic deformation were obtained. Nd-rich boundary liquid phase, which is additionally decreasing the flow stress during deformation, is supposed to play the role of diffusion path and enhance the diffusion rate.

Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.