Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09019

A Human Fungal Pathogen Cryptococcus neoformans Expresses Three Distinct Iron Permease Homologs  

Han, Kyunghwan (Department of Biotechnology, Chung-Ang University)
Do, Eunsoo (Department of Biotechnology, Chung-Ang University)
Jung, Won Hee (Department of Biotechnology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1644-1652 More about this Journal
Abstract
Iron plays a key role in host-pathogen interactions. Microbial pathogens require iron for survival and virulence, whereas mammalian hosts sequester and withhold iron as a means of nutritional immunity. We previously identified two paralogous genes, CFT1 and CFT2, which encode homologs of a fungal iron permease, Cft1 and Cft2, respectively, in the human fungal pathogen Cryptococcus neoformans. Cft1 was shown to play a role in the high-affinity reductive iron uptake system, and was required for transferrin utilization and full virulence in mammalian hosts. However, no role of Cft2 has been suggested yet. Here, we identified the third gene, CFT3, that produces an additional fungal iron permease homolog in C. neoformans, and we also generated the cft3 mutant for functional characterization. We aimed to reveal distinct functions of Cft1, Cft2 and Cft3 by analyzing phenotypes of the mutants lacking CFT1, CFT2 and CFT3, respectively. The endogenous promoter of CFT1, CFT2 and CFT3 was replaced with the inducible GAL7 promoter in the wild-type strain or in the cft1 mutant for gain-of-function analysis. Using these strains, we were able to find that CFT2 is required for growth in low-iron conditions in the absence of CFT1 and that overexpression of CFT2 compensates for deficiency of the cft1 mutant in iron uptake and various cellular stress conditions. However, unlike CFT2, no clear phenotypic characteristic of the cft3 mutant and the strain overexpressing CFT3 was observed. Overall, our data suggested a redundant role of Cft2 in the high-affinity iron uptake and stress responses in C. neoformans.
Keywords
Fungal pathogen; C. neoformans; iron uptake; iron permease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jung, W. H., A. Sham, T. Lian, A. Singh, D. J. Kosman, and J. W. Kronstad. 2008. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog. 4: e45.   DOI   ScienceOn
2 Jung, W. H., A. Sham, R. White, and J. W. Kronstad. 2006. Iron regulation of the major virulence factors in the AIDSassociated pathogen Cryptococcus neoformans. PLoS Biol. 4: e410.   DOI
3 Kronstad, J., S. Saikia, E. D. Nielson, M. Kretschmer, W. Jung, G. Hu, et al. 2012. Adaptation of Cryptococcus neoformans to mammalian hosts: Integrated regulation of metabolism and virulence. Eukaryot. Cell 11: 109-118.   DOI   ScienceOn
4 Kronstad, J. W., R. Attarian, B. Cadieux, J. Choi, C. A. D'Souza, E. J. Griffiths, et al. 2011. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat. Rev. Microbiol. 9: 193-203.   DOI   ScienceOn
5 Levitz, S. M., S. H. Nong, K. F. Seetoo, T. S. Harrison, R. A. Speizer, and E. R. Simons. 1999. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67: 885-890.
6 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   DOI   ScienceOn
7 Nyhus, K. J., A. T. Wilborn, and E. S. Jacobson. 1997. Ferric iron reduction by Cryptococcus neoformans. Infect. Immun. 65: 434-438.
8 Perfect, J. R., N. Ketabchi, G. M. Cox, C. W. Ingram, and C. L. Beiser. 1993. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J. Clin. Microbiol. 31: 3305-3309.
9 Severance, S., S. Chakraborty, and D. J. Kosman. 2004. The Ftr1p iron permease in the yeast plasma membrane: Orientation, topology and structure-function relationships. Biochem. J. 380: 487-496.   DOI   ScienceOn
10 Stearman, R., D. S. Yuan, Y. Yamaguchi-Iwai, R. D. Klausner, and A. Dancis. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271: 1552-1557.   DOI   ScienceOn
11 Tangen, K. L., W. H. Jung, A. P. Sham, T. Lian, and J. W. Kronstad. 2007. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153: 29-41.   DOI   ScienceOn
12 Wang, J. and K. Pantopoulos. 2011. Regulation of cellular iron metabolism. Biochem. J. 434: 365-381.   DOI   ScienceOn
13 Yu, J. H., Z. Hamari, K. H. Han, J. A. Seo, Y. Reyes-Dominguez, and C. Scazzocchio. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981.   DOI   ScienceOn
14 Askwith, C., D. Eide, A. Van Ho, P. S. Bernard, L. Li, S. Davis-Kaplan, et al. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76: 403-410.   DOI   ScienceOn
15 Choi, J., A. W. Vogl, and J. W. Kronstad. 2012. Regulated expression of cyclic AMP-dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans. Mol. Microbiol. 85: 700-715.   DOI   ScienceOn
16 Howard, D. H. 1999. Acquisition, transport, and storage of iron by pathogenic fungi. Clin. Microbiol. Rev. 12: 394-404.
17 Dancis, A., D. S. Yuan, D. Haile, C. Askwith, D. Eide, C. Moehle, et al. 1994. Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell 76: 393-402.   DOI   ScienceOn
18 Davidson, R. C., J. R. Blankenship, P. R. Kraus, M. de Jesus Berrios, C. M. Hull, C. D'Souza, et al. 2002. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 2607-2615.
19 Hentze, M. W., M. U. Muckenthaler, and N. C. Andrews. 2004. Balancing acts: Molecular control of mammalian iron metabolism. Cell 117: 285-297.   DOI   ScienceOn
20 Ibrahim, A. S., J. E. Edwards Jr., Y. Fu, and B. Spellberg. 2006. Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J. Antimicrob. Chemother. 58: 1070-1073.   DOI   ScienceOn
21 Jacobson, E. S., A. P. Goodner, and K. J. Nyhus. 1998. Ferrous iron uptake in Cryptococcus neoformans. Infect. Immun. 66: 4169-4175.
22 Jung, W. H., G. Hu, W. Kuo, and J. W. Kronstad. 2009. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot. Cell 8: 1511-1520.   DOI   ScienceOn
23 Jung, W. H. and J. W. Kronstad. 2008. Iron and fungal pathogenesis: A case study with Cryptococcus neoformans Cell. Microbiol. 10: 277-284.
24 Jung, W. H., S. Saikia, G. Hu, J. Wang, C. K. Fung, C. D'Souza, et al. 2010. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog. 6: e1001209.   DOI   ScienceOn