• Title/Summary/Keyword: rod cut pellet

Search Result 7, Processing Time 0.022 seconds

Design of the Dry Powder Device and Slitting Machine Device (탈피복 기계 장치와 건식 분말화 장치 설계)

  • 정재후;윤지섭;김영환;이종열;홍동희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.630-633
    • /
    • 1997
  • Spent fuel decladding device and dry voloxidizer is to separate the spent pellet from spent fuel rod cut by 250mm and to convert the spent pellet into powder form for reuse and/or disposal of the spent fuel. There are two methods in decladding and voloxidation of spent fuel, that is, wet method with chemical material and dry method with mechanical device. In this study, to examine the fuel rod decladding process and the pellet voloxidation process, the devices for the spent fuel decladding and the pellet voloxidation with dry method are developed. The decladding machine is designed to separate pellets from fuel rod by slitting device. And, the voloxidizer is designed to convert the spent pellet which is ceramic form into powder form by oxidation using the multi step mesh, vibrator, and air in the high temperature environment. The result of this study, such as operation condition et., will be utilized in the design of the machine for demonstration.

  • PDF

Interface System Construction for PWR Spent Fuel Rod Cutting and Pellet Pressing Device (PWR 핵연료 봉 커팅 및 펠렛 압출장치에 대한 연계 시스템 구축)

  • 정재후;윤지섭;흥동희;김영환;진재현;박기용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • The authors have developed two devices which cuts the spend fuel rod to an optimal size and extracts fuel pellet from the pieces of cut fuel rods. These devices are so important to reduce radioactive wastes that some advanced countries developed their own methods and devices. The authors have benchmarked from these methods and devices. For spent fuel rod cutting, the tube cutting method has been chosen. some mechanical properties of the fuel tube and pellet has been carefully considered for an optimal cutting size. For fuel pellet extraction, a mechanically extracting method has been adopted. The existing chemical method have turned out to be inappropriate because it produced large amount of radioactive wastes, in spite of its high fuel recovery characteristics. The developed method has an advantage that it can be applied to other fuel rods that have different shapes and sizes. The two devices are set up and operated in the hot cell where people can not go in, so that the devices have been designed to be controlled remotely and modulated for easy maintenance. And the performance of the devices has been tested by using simulated fuel rod. From the experimental results, the devices are supposed to be useful for reducing radioactive wastes.

  • PDF

Development of the Spent Fuel Rod Cutting Device by Cutter Blade Method (Cutter blade 방식에 의한 사용후핵연료봉 절단 장치 개발)

  • 정재후;윤지섭;홍동회;김영환;김도우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.393-396
    • /
    • 2000
  • Spent fuel rod cutting device should cut a spent fuel rod to an optimal size in order to fast decladding operation. In this paper, for developing spent fuel rod cutting device with cutter blade, rod properties such as dimension and material of zircaloy tube and fuel pellet are investigated at first and then, various methods of existing cutting devices used commercially are investigated and their performance are analyzed and compared. This device is designed to be operated automatically via remote control system considering later use in Hot-Cell (radioactive area) and the mdularization in the structure of this device makes maintenance easy. SUS and Zircaloy-4 are selected as cut material used in the test of spent fuel rod cutting device by cutter blade. In order for constructing the high durable cutter blade, various materials are analyzed in terms of quality, shape, characteristic, and heat treatment, etc. and from these results, spent fuel rod cutting device is designed and manufactured based on the considerations of durability, round shape sustainability of rod cross-section, debris generation, and fire risk, etc.

  • PDF

Development of Transportation Capsule for Spent Nuclear Fuel Rod Cuts (사용후핵연료봉 이송 Capsule의 개발)

  • Hong D.H.;Jin J.H.;Jung J.H.;Kim K.H.;Yoon J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1055-1058
    • /
    • 2005
  • In the ACPF(Advanced spent nuclear fuel Conditioning Process Facility), the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, at the other facility called PIEF(Post Irradiation Examination Facility) a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length fur the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF. Once the capsule is unloaded in the ACPF, the rod-cut is taken out one-by-one from the capsule and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed capsule which prevents the pellets scattering and remarkably reduces the leading and unloading time of the rod-cuts.

  • PDF

Design of Spent Fuel Rod Slitting Device of an Actual Proof (실증용 사용후핵연료봉 Slitting 장치 설계)

  • Jung J. H.;Yoon J. S.;Hong D. H.;Kim Y. H.;Jin J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.109-113
    • /
    • 2004
  • Slitting device is equipment to separate spent fuel of 250 mm rod cut pellets and hull in order to supply required $UO_2$ pellets through the dry pulverizing/mixing device. For development of its device, We have analyzed slitting programs so that the existing device is modified an appropriate scale in the advanced spent fuel conditioning process. The results of the analysis, we added the automatic separation function of pellets and hull, After slitting. Also, we have concentrated on reducing the operation time so that the support and the body of a slitting blade could have been established in the single structure to be easily maintained. It is based on a design and manufacture of a testing device and we have performed an efficiency evaluation. We have analyzed the results of efficiency tests of the slitting device and get the specification of the slitting device. we complete the basic design of the slitting device by using of these data. Therefore, We apply to a basic data when manufacturing a slitting device.

  • PDF

Development of transportation and storage device for spent nuclear fuel capsules (핫셀에서 사용후핵연료봉 장전 Capsule의 이송 및 저장장치 개발)

  • Hong D.H.;Jung J.H.;Kim K.H.;Park B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.369-370
    • /
    • 2006
  • During demonstrations of a process conditioning spent nuclear fuels, it is necessary to transport and handle Spent fuel road cuts from Post Irradiation Examination facility to Slitting device in The hot cell. the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length for the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF(Advanced spent nuclear fuel Conditioning Process Facility). In the ACPF, Once the capsule is unloaded in the ACPF, Capsule is taken out one-by-one and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed transportation and storage device for spent nuclear fuel capsules.

  • PDF

CERAMOGRAPHY ANALYSIS OF MOX FUEL RODS AFTER AN IRRADIATION TEST

  • Kim, Han-Soo;Jong, Chang-Yong;Lee, Byung-Ho;Oh, Jae-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.576-581
    • /
    • 2010
  • KAERI (Korea Atomic Energy Research Institute) fabricated MOX (Mixed Oxide) fuel pellets as a cooperation project with PSI (Paul Scherrer Institut) for an irradiation test in the Halden reactor. The MOX pellets were fitted into fuel rods that included instrumentation for measurement in IFE (Institutt for Energiteknikk). The fuel rods were assembled into the test rig and irradiated in the Halden reactor up to 50 MWd/kgHM. The irradiated fuel rods were transported to the IFE, where ceramography was carried out. The fuel rods were cut transversely at the relatively higher burn-up locations and then the radial cross sections were observed. Micrographs were analyzed using an image analysis program and grain sizes along the radial direction were measured by the linear intercept method. Radial cracks in the irradiated MOX were observed that were generally circumferentially closed at the pellet periphery and open in the hot central region. A circumferential crack was formed along the boundary between the dark central and the outer regions. The inner surface of the cladding was covered with an oxide layer. Pu-rich spots were observed in the outer region of the fuel pellets. The spots were surrounded by many small pores and contained some big pores inside. Metallic fission product precipitates were observed mainly in the central region and in the inside of the Pu spots. The average areal fractions of the metallic precipitates at the radial cross section were 0.41% for rod 6 and 0.32% for rod 3. In the periphery, pore density smaller than 2 ${\mu}m$ was higher than that of the other regions. The grain growth occurred from 10 ${\mu}m$ to 12 ${\mu}m$ in the central region of rod 6 during irradiation.