• Title/Summary/Keyword: rockfall energy

Search Result 43, Processing Time 0.025 seconds

Evaluation of Absorbing Energy for the Rockfall Protection Fence Using High Carbon Steel Wire Rods (경강선 적용 낙석방지울타리의 흡수에너지 평가)

  • Lee, Yongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.49-60
    • /
    • 2009
  • In order to develop a new rockfall protection fence using high carbon steel wire rod (HSWR) material instead of the conventional wire rope material, the author has conducted the laboratory strength tests of both materials and their connections, and carried out evaluation of absorbing rockfall energy through the vertical field rockfall tests. The vertical filed rockfall tests showed that the new rockfall protection fence with 12 rows of the HSWR could absorb more rockfall energy than 50 kJ which stands for the typical design criteria. In addition, when the quantity of HSWR was increased up to the 16 rows, the capacity of absorbing energy was greatly improved. The new rockfall protection fence was successfully applied to the highway rock-cut slope. As a result of the filed application, its constructability was similar to the conventional fence, but its total image was improved as simple and clean. The total construction cost was saved up to 20% in comparison with the conventional one.

  • PDF

Flexible Barrier System for Rockfall Protection (유연성 방호책을 이용한 철도변 낙석방호사례)

  • 최승일;유병옥;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.103-116
    • /
    • 2003
  • Rockfall Protection fence is one of the most common rockfall Protection methods in Korea. If rockfall protection fences are required along the road or railway, their location, height and capacity, in terms of the maximum kinetic energy that they can absorb, should be specified. Within this paper, the best practice of rockfall barrier is introduced. Modern rockfall simulations as a means to define risks, protection requirements, dynamic loading and height of potential structures and selection of appropriate placement is presented. Technical possibilities of rockfall barriers and their actual limits are presented. Safety concepts based on probabilistic approaches are proposed. Recent studies peformed in other countries show that Flexible Barriers are also a feasible system to stop and retain debris flows. Finally an outlook onto further development is given.

  • PDF

A Study on the Analysis of Rockfall Simulation using Rockfall Characteristics (낙석 특성을 고려한 낙석 시뮬레이션 해석 연구)

  • Rhee, Jong-Hyun;Koo, Ho-Bon;Park, Hyuck-Jin;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.719-724
    • /
    • 2005
  • It conducted an analysis and the research against kinetic energy distribution, velocity and bounce height according to rockfall characteristics using rockfall simulation program in cut-slope. This study considered kinetic energy and bounce height of rockfall for efficient establishment of rockfall protection fencefence that is countermeasure in cut-slope.

  • PDF

A Study on Efficient Design of Rockfall Prevention Netting (낙석방지망의 효율적 설계를 위한 기초연구)

  • Lee, Jundae;Park, Soobeom;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.53-59
    • /
    • 2014
  • In order to obtain basic data for reasonable design of rockfall prevention net unreasonably being designed according to experiences, this paper determined a standard cross section and analyzed the effects of parameters such as inclination and height of slope faces, rockfall weight, separation distance on rockfall behaviors such as bounce height, kinetic energy and passage rate. The weight of rockfall changed from 400 kg to 700 kg and then to 1,000 kg. With the height of 20 m as the standard, the test was conducted with the inclination at $63^{\circ}$ and $55^{\circ}$ which may affect rockfall behaviors. Analysis was made while changing the fall height of rockfall from 3 m to 15 m and then to 20 m, thereby analyzing and evaluating changes in maximal kinetic energy occurring in the base of slope. According to the analysis result, in designing a rockfall prevention wire net, a design considering various conditions including inclination of the slope, expected size or weight of rockfall, situation of the slope and the shape of rockfall, and rockfall trace is judged necessary beyond the current uniform application.

A Study on Bounce Height and Impact Energy Considering Slope Height, Rockfall Weight Using Rockfall Program Considering Slope Height, Rockfall Weight (낙석해석프로그램을 이용한 비탈면 높이, 낙석중량별 도약높이 및 충격에너지 검토)

  • You, Byung-Ok;Han, Won-Jun;Lee, Sang-Duk;Shim, Jea-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2011
  • The rockfall protection fence installed to secure safety against rockfall occurring in cut slope has been designed under the condition with 50kJ of impact energy arising when the 400kg of rock block is falling from 12.5m height. However, in falling case of bigger rock block or from higher place, it is hard to be secure of safety with existing rockfall protection fence. Using the rockfall program, safety analysis for rockfall is conducted in this paper by changing slope height, separating distance from fence, and slope angle, according to rock block sizes. In the result of analysis, when a 400kg of rock block which is designed load is fallen, the existing rockfall protection fence with 2.5m height can secure most of rock fall except some cases for the slope having 20m or less hight, whereas for more than 20m height, the fallen rock is frequently splattered over the rockfall protection fence, as well as the impact energy of rockfall may exceed designed impact energy. Therefore, in the design of rock fence, it is considered appropriate to design that after conducting safety review for rockfall according to the ground conditions, evaluating the bounce height and impact energy of rock fall, and then installing appropriate rockfall protection fence would be applicable rather than just following standards based design drawing.

Estimation of Absorbing Capacity from Rockfall Protection Fences (도로 낙석방지울타리의 낙석지지능력 평가 연구)

  • Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.59-66
    • /
    • 2002
  • Designs for rockfall protection systems must consider rock and soil types, the angle of the slope, conditions on top and the toe of the affected area. Rockfall protection fence is installed to block for falling rock from cut slopes and this is one of the most common rockfall protection measures. The capability of the fence is provided that sum of capability of poly vinyl chloride coated wire mesh, steel support and wire rope respectively. But in some case, the rockfall protection fence was not supported rockfall energy less than total capability of the fence through the full scale rockfall tests. Therefore, the objectives of this paper are to indicate the problems of fence capability and to improve the design specifications for the fence.

  • PDF

Field Test for Absorption Energy and Displacement of Rockfall Protection Net (낙석방지울타리 망의 변위량 및 성능검증을 위한 실물낙석시험)

  • Seo, JinHyuk;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.17-21
    • /
    • 2020
  • Over 60% of South Korea's land consists of mountainous topography, and recently, due to earthquakes, localized heavy rains and road development, the risks of rockfalls are getting higher. As of now, rockfall prevention facilities are being constructed in 70% of Korean roads cut slope and rockfall protections account for about 20% of them. Rockfall protection's supporting capacity is defined by combining performance of wire mesh, pillars and wire ropes. For the existing constructed rockfall protection, standards of pillars that can absorb 48~61 kJ amount of energy, wire ropes and wire mesh are presented in Guidelines for the installation and management of traffic safety facilities, Rockfall prevention facilities by Ministry of Land, Transport and Maritime Affairs (2008). However, each factor's correlation of absorption energy is not presented so it is uncertain. This study will conduct vertical drop test and identify adequacy of rockfall protection net of displacement quantity calculation factor which is delta and evaluate rockfall protection net's absorbable energy through standards of overseas performance evaluation criteria.

Evaluation of Structural Performance for High Strength Rockfall Protection Fence according Reinforcement of H-Beam using Numerical Analysis (수치해석을 통한 지주 보강에 따른 고강도 낙석 방지울타리 구조성능 평가)

  • Hyunwoo Jin;Sanghoon Seo;Duho Lee;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • In Korea, the rockfall prevention fence is designed with 50kJ of rockfall kinetic energy in order to prevent damages such as falling rocks and landslides. In the case of rockfall kinetic energy, it is highly dependent on the shape of the slope on which it occurs. As a previous study, a fence performance evaluation was conducted for 100kJ rockfall impact energy using ETAG 27. However, previous studies have focused on newly installed rockfall prevention fences. In this study, a reinforcing materials was installed on the existing rockfall prevention fence through numerical analysis, and the structural performance of the high-strength rockfall prevention fence capable of defending against 120kJ of rockfall kinetic energy was evaluated.

Performance Assessment for Rockfall Protection Systems II: Performance Assessment (낙석방지울타리의 성능평가 II: 성능평가)

  • Kim, Kee Dong;Ko, Man Gi;Kim, Dal Sung;Han, Ki Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.49-61
    • /
    • 2015
  • This is the second of two companion papers that describe the performance assessment for flexible rockfall protection systems. Described in a companion paper is the criteria to assess the performance of flexible rockfall protection systems. In this study the performance assessment of domestic rockfall protection fences was implemented using the criteria suggested in the companion paper. It was investigated that the rockfall protection fences for express highways performed well to resist the rockfall energy of 50kJ and the deformed rockfall protection fences right after impacting would not obstruct the vehicle traffic. However, to dissipate the rockfall energy of 50kJ with the level of European standards constantly, the spacing of wireropes was adjusted to be 200mm up to the 8th wirerope from the bottom and spacing-maintainers should be extended to the 8th wirerope. It was figured out that the rockfall protection fences for general highways were required to install spacing-maintainers as those for express highways because they, which did not have spacing-maintenance members, were very prone to the penetration of rockfall even for the very small rockfall impact energies.

Performance Evaluation Test of Rockfall Protection Fences for 100kJ Rockfall Protection Fences Development (100kJ급 낙석방지울타리 개발을 위한 기존 낙석방지울타리 성능평가 시험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2022
  • In this study a test was conducted to identify weak section using 100kJ class rock energy to find out the protection performance of rockfall prevention fences in Korea. Performance rating of the rockfall protection fences is very low (48~61kJ) compared to that of foreign countries and it is necessary to determine whether it can function properly if high rock energy is generated. Furthermore, a reinforcing technology that can improve to 100kJ energy on the existing rockfall protection fences should be developed. Therefore, this study confirmed the protection performance using 100kJ rock energy in the existing rockfall protection fence system (for national road, for highway) and identified weak section of post, wire ropes and nets. Furthermore, it will be used as basic data for developing 100kJ class reinforcement technology without dismantling the existing rockfall protection fence (48-61kJ).