• Title/Summary/Keyword: rocket engine

Search Result 988, Processing Time 0.024 seconds

Flow Characteristics of Cryogenic Oxidizer in Liquid Propellant Rocket Engine (액체로켓 엔진에서의 극저온 산화제의 유동 특성)

  • 조남경;정용갑;문일윤;한영민;이수용;정상권
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • In most cryogenic liquid rocket engines, liquid oxygen manifold and injector are not thermally insulated from room temperature environment fur reducing system complexity and the weight. This feature of cryogenic liquid rocket engine results in the situation that cryogenic liquid oxygen flow is easy to be vaporized especially in the vicinity of the manifold and the injector wall. The research in this paper is focused on two-phase flow phenomena of liquid oxygen in rocket engine. Vapor fraction was estimated by comparing the measured two-phase flow pressure drop in engine manifold and the injector with ideal single phase pressure drop. Heat flux into cryogenic flow is estimated by measuring the wall temperature on the engine manifold to examine boiling characteristics. Suitable correlations for cryogenic two-phase flow were also reviewed to see their applicability. In addition, the effect of vapor generation in liquid rocket engine manifold and injector on engine performance and stability was considered.

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.

Technology Trends in Additively Manufactured Small Rocket Engines for Launcher Applications (발사체 소형엔진용 적층제조 기술 동향)

  • Lee, Keum-Oh;Lim, Byoungjik;Kim, Dae-Jin;Hong, Moongeun;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.73-82
    • /
    • 2020
  • Additively manufactured, small rocket engines are perhaps the focal activities of space startups that are developing low-cost launch vehicles. Rocket engine companies such as SpaceX and Rocket Lab in the United States, Ariane Group in Europe, and IHI in Japan have already adopted the additive manufacturing process in building key components of their rocket engines. In this paper on technology trends, an existing valve housing of a rocket engine is chosen as a case study to examine the feasibility of using additively manufactured parts for rocket engines.

Transient Thermal Analysis on Wall Temperature Change of Rocket Engine Combustion Chamber Considering Film-Cooling (막냉각을 고려할 때 로켓엔진 연소실 벽면 온도변화에 대한 비정상 열해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, Il-Yoon;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.37-46
    • /
    • 2012
  • The calculation model for heat transfer analysis of rocket engine combustion chamber considering film-cooling has been established. Convective, radiative heat transfers and film-cooling effect in combustion chamber were evaluated using empirical equations especially for rocket engine combustors, and for heat transfer outward from chamber wall general convective and radiative equations were applied. Structural grid has been generated inside chamber wall for FVM calculations, and transient thermal analyses were carried out by time-marching techniques. LOx/kerosene rocket engine with chamber pressure of 50 bar has been analysed, and it is shown that, in that case, the film-cooling less than 4% remarkably contributes to reduce wall temperature, but the effect of the effect of film-cooling more than about 4% is not significantly increased.

Transient Analysis on Heat Transfer of Rocket Engine Combustion Chamber Considering Film-cooling (막냉각을 고려한 로켓엔진 연소실 열전달 비정상 해석)

  • Ha, Seong-Up;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.867-868
    • /
    • 2011
  • Transient Analysis on heat transfer of rocket engine combustion chamber and wall temperature variation was carried out, especially, calculations of LOx/kerosene rocket engine with/without fuel film-cooling were conducted. Convective and radiative heat flux inside combustion chamber wall were calculated by the empirical equations for rocket engine combustion, and conduction of wall interior was calculated by numerical method with 2D axisymmetric grid. In this calculations the transient variations of wall temperature, the location changes of peak temperature and so on affected by film-cooling were analyzed.

  • PDF

High-Temperature Deformation Behavior of a STS 321 Stainless Steel (STS 321 스테인리스강의 고온 변형 거동)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.51-59
    • /
    • 2016
  • STS 321 stainless steel is generally used for a material of high-temperature and high-pressure system including liquid rocket engine. The constitutive equation for flow stress has been suggested using thermal stress component and athermal stress component based on Kocks dislocation barrier model to predict 321 stainless steel's deformation behavior at elevated temperature. The suggested model predicted well the material deformation behaviors of 321 stainless steel at the wide temperature range from room temperature to $500^{\circ}C$.

Optimal Output Tracking Control Simulation for Thrust Control of an Open-cycle Liquid Propellant Rocket Engine (개방형 액체로켓엔진의 추력제어를 위한 최적출력 추종제어 시뮬레이션)

  • Cha, Jihyoung;Cho, Woosung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.52-60
    • /
    • 2020
  • This paper deals with an optimal output tracking control for open-cycle liquid propellant rocket engine. For this purpose, we modeled simplified mathematical model of open-cycle liquid propellant rocket engine and designed optimal output feedback control system using combustion chamber pressure. For design the closed-loop system of open-cycle liquid propellant rocket engine, we designed optimal output feedback linear quadratic tracking control system using the linearized model and demonstrated the performance of the controller through numerical simulation.

The Study on the Thrust Measurement System of Low Thrust Liquid Rocket Engine (저추력 액체로켓엔진의 추력 측정 장치에 대한 연구)

  • Lee, Dong-Hyeong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.55-59
    • /
    • 2008
  • It is very difficult to measure an accurate thrust for the performance test of liquid rocket engine. Liquid rocket engine is attached to the propellant feed system, control valve and many other safety systems. Without considering these effects, thrust data measured from the firing test is not reliable and meaningless. In this research, the modified thrust measurement system, which includes both all these side effects is developed for the verification of low thrust liquid rocket engine performance. In addition, reliability appraisal technique is studied to secure the reliability of thrust measurement system.

  • PDF

Definition of Engine Component Performance Test Range of 75tf Class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.91-97
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

Definition of Engine Component Performance Test Range of 75tf class Gas Generator Cycle Liquid Propellant Rocket Engine (75톤급 가스발생기 사이클 액체로켓엔진의 시험영역과 엔진 구성품 시험 영역의 결정)

  • Nam, Chang-Ho;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.51-56
    • /
    • 2011
  • A test range for a 75tf class gas generator cycle liquid propellant rocket engine is defined. The engine system test range is defined by the performance variation during flight, the dispersion after engine calibration, and additional margin. The component development test range includes the operation range corresponding to the engine system test range and the component performance margin.

  • PDF