• Title/Summary/Keyword: rock-surface temperature

Search Result 105, Processing Time 0.031 seconds

Laboratory Study for Phosphate Coating on Pyrite Surface for Reduction of Acid Rock Drainage (건설현장의 산성암반배수 발생저감을 위한 철인산염 피막형성 최적조건 도출 실내연구)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Kim, Tack-Hyun;Lee, Sang-Hoon;Song, Yun-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1083-1089
    • /
    • 2006
  • Acid drainage occurs when sulfide minerals are exposed to an oxidizing environment. The objective of this study was to examine the optimum condition for creating a phosphate coating on standard pyrite surfaces for reduction of pyrite oxidation. The solution of $10^{-2}M\;KH_2PO_4\;10^{-2}M\;H_2O_2$ pH 6 was identified as the best phosphate coating agent for the reduction of pyrite oxidation. The formation of an iron phosphate coating on pyrite surfaces was confirmed with ore microscope and scanning electron microscope equipped with energy dispersive spectroscopy. The temperature did not significantly affect on the formation of phosphate coating on the surface of pyrite. However, the phosphate coating was less stable at higher temperature than at lower temperature. The phosphate coating was quitely stable at wide range of pH and $H_2O_2$ concentration. The less than 3.4% of phosphate was dissolved at pH 2.79 and 10.64 and less than 1.0% of phosphate was dissolved at 0.1M $H_2O_2$. On the basis of these results, the phosphate coating can effectively reduce the negative environmental of acid rock drainage.

  • PDF

Rock-Surface Temperatures of Baeknokdam Northwest Face in the Summit Area of Mt. Halla (한라산 백록담 서북벽 암온의 향별 특성)

  • KIM, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.109-121
    • /
    • 2012
  • Rock-surface temperatures were observed at a trachytic lava dome, called as Baeknokdam Northwest Face, in the summit area of Mt. Halla, Jeju Island, to examine the frequency and occurrence season of freeze-thaw cycles and the rate of temperature changes during a freezing period. Long-term measurements were recorded over 18 months from November 2006 to April 2008, at a 1-hour logging interval and rock depth of 1.5 cm. Both diurnal freeze-thaw cycles and effective freeze-thaw cycles appear in larger numbers on a south-facing rock face than a north-facing rock face. The diurnal cycles were dominantly observed on February and March for the south face and on November and April for the north face, respectively. The annual freeze-thaw cycles were confirmed in terms of the presence of seasonal freezing periods lasting from mid-November to mid-April for the south face and from early-November to late-April for the north face, respectively. The rate of decreasing temperatures during the seasonal freezing periods is larger on the north face than the south face. Notwithstanding the lower numbers of freeze-thaw events, the north face experiences a higher frost intensity since the number of hours below $-3^{\circ}C$ is larger on the north face than the south face. The number of freeze-thaw events and the duration of days with continuous sub-zero rock temperatures largely depend on the solar radiation controlled by the aspect of the monitored rock surfaces, and thus the high-frequency short-term frost cycle dominantly appears on the south face and the annual frost cycle on the north face, respectively.

Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea (국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산)

  • Kwon, O-Il;Baek, Yong;Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2007
  • Freezing and thawing cycle is one of the major weathering-induced factors in the mechanical weathering of the rock mass. This natural process accelerates rock weathering process by breaking down the parent rock materials and makes soil or weathered rock formation in a rock slope surface zone. It can also cause reduction of the shear strength in slopes. It is important to calculate the deterioration depth caused by freezing-thawing for a slope stability analysis. In this study, deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was also carried out using collected temperature distribution data for last five years of several major cities in Korea. The analysis was performed based on the distributed rock types in study areas. Thermal conductivities, specific heats and densities of the calculation rocks are tested in the laboratory. They are thermal properties of rocks as input parameters for calculating deterioration depths. Finally, the paper is showing the calculated deterioration depths of each rock type slopes in several major cities of Korea.

Evaluation of Crack Behavior and Climate Monitoring of Ipseok-dae Columnar Joints and Jigong Neodeol Rock Blocks in Mudeungsan National Park (무등산국립공원 입석대 주상절리 및 지공너덜 암괴의 균열 거동과 기후 모니터링 평가)

  • Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.621-630
    • /
    • 2021
  • This study evaluated cracks and climate monitoring in Ipseok-dae columnar joints and Jigong Neodeol rock blocks in Mudeungsan National Park. The rocks' state of cracking and their surface temperatures were measured alongside air temperature, relative humidity, and wind velocity. The maximum crack behavior in Ipseok-dae was 0.367 mm at one point, and showed a slight tendency at other points. One in Jigong Neodeol was within 0.15 mm and showed a stable state with little change. The surface temperature of the Ipseok-dae columnar joints was higher on the side exposed to sunlight than on the shaded side. All blocks of Jigong Neodeol rock showed similar temperatures. The air temperature showed a similar distribution for both rock types. The air temperature showed a similar distribution for both Ipseok-dae and Jigong Neodeol. The relative humidity was mostly between 20% and 60% in Ipseok-dae and was between 20 and 70% in Jigong Neodeol. Both areas had low wind speeds, with maxima of 5 m/s in Ipseok-dae and 3 m/s in Jigong Neodeol. As a result, it is evaluated that crack behavior in Ipseok-dae columnar joints and Jigong Neodeol rock blocks have maintained a very stable state so far. The surface temperature, temperature, relative humidity, and wind velocity of the two areas showed small difference depending on the season, indicating that they were affected to some extent by the season. From a long-term perspective, this can continuously affect the deformation of the Ipseok-dae columnar joints or Jigong Neodeol rock blocks. Therefore, in order to accurately evaluate their stability, it is considered that the current microscopic delamination and exfoliation or the propagation and expansion of cracks should be continuously measured.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

The influence of air gaps on buffer temperature within an engineered barrier system

  • Seok Yoon;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4120-4124
    • /
    • 2023
  • High-level radioactive waste produced by nuclear power plants are disposed subterraneously utilizing an engineered barrier system (EBS). A gap inevitably exists between the disposal canisters and buffer materials, which may have a negative effect on the thermal transfer and water-blocking efficiency of the system. As few previous experimental works have quantified this effect, this study aimed to create an experimental model for investigating differences in the temperature changes of bentonite buffer in the presence and absence of air gaps between it and a surrounding stainless steel cell. Three test scenarios comprised an empty cell and cells partially or completely filled with bentonite. The temperature was measured inside the buffers and on the inner surface of their surrounding cells, which were artificially heated. The time required for the entire system to reach 100℃ was approximately 40% faster with no gap between the inner cell surface and the bentonite. This suggests that rock-buffer spaces should be filled in practice to ensure the rapid dissipation of heat from the buffer materials to their surroundings. However, it can be advantageous to retain buffer-canister gaps to lower the peak buffer temperature.

Experimental Analysis of Ventilation Effect on the Performance of Building-Integrated PV Solar Roof (건물통합형 PV Solar Roof의 통풍효과 실험분석)

  • Kim, Jin-Hee;Lee, Kang-rock;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • The integration of PV modules into building facades or roof could raise PV module temperature that results in the reduction of electrical power generation. Lowering operating temperature of PV module is important in this respect, and PV module temperature should be considered more accurately, for building-integrated PV(BIPV) systems in predicting their performance. This paper describes a BIPV solar roof design and verifies its performance through experiment In relation to the effect of ventilation in space between PV module and roof surface. The results showed that the ventilation in the space had a positive effect in lowering the module temperature of the BIPV solar roof that enhanced the performance of its electricity generation.

Physical and Mechanical Characteristics of the Antarctic Rocks Exposed to the Extreme Environment (극한환경에 노출된 남극 암석의 물리적·역학적 특성)

  • Kim, Kiju;Kim, YoungSeok;Hong, Seung Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.275-284
    • /
    • 2012
  • The Antarctic continent exposed to strong wind, very low temperature, and extremely dry condition. The freezing-thawing cycles under this extreme environment change the mechanical characteristics of rocks near the ground surface. To investigate the effect of freezing-thawing cycles under the extreme environment understand on geotechnical properties of rocks, rocks from the Antarctica were collected from two places: (1) West Antarctic Cape Burks and (2) East Antarctic Terra Nova Bay areas. The rock characteristics of these two areas were described and compared. For Terra Nova Bay area, rock characteristics of rocks near the surface and depths exceeding 2.9 m were examined. The 'near-the-surface rocks' averages of absorption rate, P-wave velocity, and unconfined compressive strength were 0.56%, 3,717 m/s, and 109MPa, respectively; while, those values of 'deep-sited rocks' were 0.24%, 4,670 m/s, and 88MPa. From the measurements, it was found that the effects of weathering were not significant on mechanical characteristics (strength) but were pronounced on physical characteristics(absorption and P-wave velocity).

The Prototype Study of Resistivity and Porosity Measurement for the Samples Collected Near Marine Hydrothermal Deposit (해저열수광상 주변 암석 시료의 공극률과 전기비저항 측정 기초실험)

  • Lee, Sang-Kyu;Lee, Seong-Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.378-387
    • /
    • 2010
  • We present the results of laboratory measurement of porosity and electrical resistivity for the samples collected near marine hydrothermal deposit to provide fundamental perspective of physical properties for future electromagnetic survey. The rock cores are sampled from the host rock, pumice, hydrothermal altered zone, and chimney. These samples are featured as easily brittle, rough surface with large pores, having components easily solvable in the water. We suggest systematic approach for measuring weights, volumes of core samples to calculate density and porosity. Measurements reveal that the resistivities of black host rock, gray host rock, pumice and chimney are 102, 39, 11, 0.1 ohm-m, respectively, when the core samples are saturated with saline water of $32,000\;{\mu}S$/cm (0.5 ohm-m) at temperature of $2.5^{\circ}C$ and these correspond to the factors of 5 for sea water, 110 for pumice and 390~1020 for host rocks with respect to the resistivity of chimney. We also confirm that resistivity of rock samples saturated with water decrease with temperature linearly over the temperature range of $20{\sim}80^{\circ}C$.

Characteristics on the Crytocaryon irritans of Rock bream, Oplegnathus fasciatus in the embankment fish farm (축제식양식장에서 사육한 돌돔, Oplegnathus fasciatus의 백점충, Crytocaryon irritans 감염 특성)

  • Choi, Hye-Sung;Bang, Jong-Duk;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • Crytocaryon irritans infection of rock bream was investigated in embankment fish farm from July to December 2009. Prevalence variation was 20.0~88.0% that was high in september and was low in July. While no mortality was found in July and August, it occurred after mid september. Environmental conditions during the survey period were water temperature $19.3{\sim}24.3^{\circ}C$, dissolved oxygen $5.0{\sim}7.1\;mg\;L^{-1}$ and salinity 31.9~33.7 psu, and the water temperature during mortality season was $24.0^{\circ}C$. External symptom of the rock bream was secretion mucus but swimming showed fine in the early infected period. While, the symptoms in the severe outbreak season were excess of mucus, falling off tail and congestion, bleeding spot the surface and weakened swimming. We observed free living and parasitic stages in the gills and body surface of rock bream. Hepato somatic index (HSI) was $1.9{\pm}1.1{\sim}3.5{\pm}1.7%$, which was low in the September being mortality season but was high in November. The percentages of hematocrit infected with Crytocaryon irritans were 37.3% and 41.0% in July and August, respectively while they gradually decreased to 32.1% and 24.2% in september and October, respectively. Total cholesterol and Triglyceride values rapidly decreased by October. After mortality, AST and ALT were 7 and 5 folds higher compared to non-mortality season.