• Title/Summary/Keyword: rock weathering

Search Result 414, Processing Time 0.026 seconds

Weathering Characteristics of Sedimentary Rocks Affected by Periodical Submerging (주기적으로 침수되는 퇴적암의 풍화특성)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • The weathering characteristics of periodically submerged sedimentary rocks in the Sayeon dam, Ulsan was examined by field work, electron probe micro-analysis, X-ray diffraction, and X-ray fluorescence spectrometry. Analysis of fracture zone and exfoliation showed the submerged sedimentary rocks have undergone severe mechanical weathering. Mechanical weathering in the water-rock interface accelerated chemical weathering, such as dissolution and alteration of the most of minerals except for quartz in the weathering zone. The dissolution of carbonates specially calcite, is remarkable creating the cavities, whereas formation of minerals including clay minerals is not active. The sedimentary rocks have been periodically submerged for a certain period of time, and have repeated freezing and thawing. This mechanical weathering favored infiltration, which accelerated mineral dissolution. The high content of easily soluble carbonate of the sedimentary rocks is likely the major cause of intense chemical weathering. The dissolved elements within the infiltrated water interrupted the occurrence of clay and weathering minerals, and expend fractures by infiltrated water accelerated weathering process.

Material Characteristics and Quantitative Deterioration Assessment of the Sinwoldong Three-storied Stone Pagoda in Yeongcheon, Korea (영천 신월동삼층석탑의 재질특성과 훼손도 정량평가)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Chae, Seong-Tae;Jung, Young-Dong
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • The Yeongsheon Sinwoldong three-storied stone pagoda (Treasure No. 465) composed mainly of drusy alkali-granite. The major rock-forming minerals are biotite, quartz, amphiboles, orthoclase and plagioclase. Yellowish brown and black discoloration are formed at the eight sculpture Buddha of the stylobate. A broken rock fragments in the roof material were repaired using epoxy resin and cement mortar in the past. As a result of the infrared thermography analysis from the pagoda, cracks and exfoliation were not serious. Also, P-XRF analysis showed that concentration of Fe (mean 5,599ppm) and S (mean 3,270ppm) were so high in yellowish discoloration parts. Black discoloration area was detected highly Mn (mean 2,155ppm) concentration around the eight sculpture Buddha of the stylobate. The main reason for these are inorganic contaminants from disengaged rock ingredient and organic contaminants from withered plant body. Degree of physical weathering is relatively high in the southern and northern side. The eastern and western side had similar with weathering condition. The northern and eastern side were serious discoloration and biological weathering relatively. Therefore, we suggest that the pagoda need to do cleaning of biological contaminant and conservation treatment to weakened materials of rock and long term monitoring.

Structural Stability, Weathering and Conservation Method of Granite Standing Sculptured Buddha at Hwangsang-dong, Kumi (구미 황상동 마애여래입상의 구조적 안정성, 풍화 및 보존방안)

  • Lee, Chan Hee;Choi, Suck Won;Suh, Mancheol;Chae, Sang Jeong
    • Journal of Conservation Science
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2000
  • Rock composition of the Hwangsang-dong Granite Standing Sculptured Buddha (Treasure No. 1122) in the Kumi City is biotite-hornblende granodiorite which consists of about 30 pieces of individual rock blocks of same compositions. However, the cap rocks is pebble-bearing coarse sandstone. Rock blocks of the Standing Buddha and surrounding out crops occur well developed several joint systems of $N25^{\circ}$ to $45^{\circ}W$ strike and nearly vertical (70 to $85^{\circ}SE$) dipping. Rock blocks of the Standing Buddha showed vertical, horizontal and oblique joints, and those blocks are well supported by individual blocks. However, the junction part of the blocks are under dangerous situation due 10 seriously mechanical and chemical weathering. Host rock of the Standing Buddha belongs to the HW grade, therefore mostly rock-forming minerals of the granodiorite Standing Buddha altered with clay and iron hydroxide minerals by mineralogical and chemical weathering. Near surface of the Standing Buddha show spore and mycelium of green algaes, and a joint plane alive with weeds. We suggest that if structural stability for the Standing Buddha remove essentially a unstable rock blocks from the main body, and the main body necessitate supporting by rock bolting method because of repeated unstability and minimizing stress to the rock blocks. For the opened joint planes, fractured surface and alive weeds will attempt to fill in a petro-epoxy, petro-filler and biochemical treatments for the algaes, and ground water curtain and wall seems to be necessary for water flow and diminishing humidity of the Standing Buddha.

  • PDF

Weathering Characteristics of Rocks near Churyong Tunnel Site, Kyongbuk, using Geophysical and Geochemical Methods (경북 추령터널 부근 암석의 풍화특성에 관한 지구물리화학적 연구)

  • 서만철;김민규;최석원
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.269-281
    • /
    • 1994
  • Microscopic study and X-ray diffraction analysis were carried out to find out rock type, tock forming minerals; and weathering characteristics of rocks at the constructing site of the churyong Tunnel, Kyongju-Gun, Kyongbuk. Seismic velocity and compressional strength were measured to evaluate mechanical properties of rock. The rock of the study area is Jurassic tuff consisting of clay minerals, crystals of quartz and feldspar, fragments of volcanic rocks and shale. Fresh tuff has compressional strength of about $443kg/\textrm{cm}^2$ and seismic velocity of about 3680m/sec in average. It is classified as soft rock. Rock fragment within tuff is andesite and it has compressional strength of about $2500kg/\textrm{cm}^2$ and seismic velocity of about 4340m/sec in average. It is classified as hard rock. A good linear relationship is found between compressional streangth and seismic velocity in both laboratory sample and in-situ rocks. Laboratory samples has seismic velocities faster about 1.5km/sec than those in-situ rocks. It is interpreted that joints, fractures, and water content in the in-situ rocks result in decreas of seismic velocity. As Tuff has more than 50% of clay minerals in matrix and shale fragments, it absorbs water easily in atmospheric condition. Therefore, though the rock in the study area is medium hard rock before weathering, it is weathered very easily in the case of exposure to natural environment, comparing with other rock.

  • PDF

Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea (국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산)

  • Kwon, O-Il;Baek, Yong;Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2007
  • Freezing and thawing cycle is one of the major weathering-induced factors in the mechanical weathering of the rock mass. This natural process accelerates rock weathering process by breaking down the parent rock materials and makes soil or weathered rock formation in a rock slope surface zone. It can also cause reduction of the shear strength in slopes. It is important to calculate the deterioration depth caused by freezing-thawing for a slope stability analysis. In this study, deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was also carried out using collected temperature distribution data for last five years of several major cities in Korea. The analysis was performed based on the distributed rock types in study areas. Thermal conductivities, specific heats and densities of the calculation rocks are tested in the laboratory. They are thermal properties of rocks as input parameters for calculating deterioration depths. Finally, the paper is showing the calculated deterioration depths of each rock type slopes in several major cities of Korea.

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

Side resistance of rock socketed drilled shafts considering in situ rock mass condition (현장조건을 고려한 현장타설말뚝의 단위주면마찰력)

  • Sagong, Myung;Paik, Kyo-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.967-973
    • /
    • 2004
  • Rock socketed drilled shafts transfer significant portion of structural loads at the socketed part. Therefore, a proper design of side and base resistances of a shaft at the socket is a major concern for the geotechnical engineers. In this study, we modified the Hoek-Brown criterion to estimate side resistance of rock socketed drilled shafts. Earlier method to compute side resistance of a shaft is linear or power functions of intact rock masses. However, side resistance is mobilized like shearing which influenced by the mechanical properties of concrete and rock masses, adhesion of rock/concrete interface, roughness of rock socket. Therefore, a single coefficient or power of uniaxial compressive strength of intact rock cannot provide accurate values of side resistance in a wide range of the uniaxial compressive strength. A new approach proposed in this study can consider in situ rock mass condition (frequency or discontinuities, weathering condition), and rock types thus, it has a wider applicability than the earlier models.

  • PDF

Conservation of the Seosanmaaesamjonbulsang (Rock-carved Triad Buddha in Seosan), Korea (서산 용현리 마애여래삼존상의 보존처리)

  • Min, Won Geun;Jong, Hee Su;Yang, Hee Jae
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.73-86
    • /
    • 2014
  • The Seosanmaaesamjonbulsang (national treasure 84) is carved has a quite developed tectonic line in a precipitous wall of stratified rock to the vertical and horizontal directions. The main buddha and the left part of it have got the biological weathering and the efflorescence has been detected on the shoulder part of the right buddha. It has been caused by the raindrops from upper rock after the dismantling of the protection shelter in 2007. Two proper measures have been taken in order to reduce the weathering and protect it from some damages. The one is removing the contaminant by dry/wet cleaning not to get any damage on the rock. The other is the isolation by the construction of a new waterway used L-30 on the upper part of the rock not to contaminate the surface of Rock-carved triad buddha with the raindrops from upper rock. Moreover, the sunlight for buddha has been increased and good ventilation has been made by cutting down the trees around the Rock-carved triad buddha.

  • PDF

Chemical Weathering Deterioration of Oya Tuff and Its Alteration to Zeolitic Materials (오야응회암의 지화학적 풍화 열화 특성과 변질작용)

  • Choo Chang Oh;Jeong Gyo-Cheol;Oh Dae Yul;Kim Jong-Tae;Seiki T.
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.381-390
    • /
    • 2004
  • This study was performed to relate the weathering properties of Oyaish tuff from Japan to mechanical properties of rocks in terms of mineralogical alteration and chemistry. The tuff is composed of clinoptilolite, quartz, feldspars, mordenite, opal C-T, and smectite. Since fresh tuff contains approximately $30\~50\%$ zeolite, it is expected that the rock is subjected to weathering process ascribed to water contents on earth surface, significantly reducing mechanical strength of tuff. It is also anticipated that weathering process and properties may be different even in the same rock mass, due to the differences in local mineralogy, chemistry and microtextures in tuff.

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF