• Title/Summary/Keyword: rock type

Search Result 1,084, Processing Time 0.029 seconds

Effect of Vertical Change of the Rock Mass Characteristics on Rock Mass Classification by Numerical Analysis (암반특성의 수직변화가 암반분류에 미치는 영향에 관한 수치해석적 연구)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Woo, Sung-Won;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.476-479
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the vertical direction. However, such case is seldom encountered in practice and not applicable when the properties vary along the vertical direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the vertical direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$(vertical direction) on the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter (레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발)

  • 배기윤;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

Effects of long double-stranded RNAs on the resistance of rock bream Oplegnathus fasciatus fingerling against rock bream iridovirus (RBIV) challenge

  • Kosuke, Zenke;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2010
  • To determine whether rock bream Oplegnathus fasciatus can be protected from rock bream iridovirus (RBIV) infection by intramuscular injection of long double-stranded RNAs (dsRNAs), we compared protective effect of virus-specific dsRNAs corresponding to major capsid protein (MCP), ORF 084, ORF 086 genes, and virus non-specific green fluorescent protein (GFP) gene. Furthermore, to determine whether the non-specific type I interferon (IFN) response was associated with protective effect, we estimated the activation of type I IFN response in fish using expression level of IFN inducible Mx gene as a marker. As a result, mortality of fish injected with dsRNAs and challenged with RBIV was delayed for a few days when comparing with PBS injected control group. However, virus-specific dsRNA injected groups exhibited no significant differences in survival period when compared to the GFP dsRNA injected group. Semi-quantitative analysis indicated that the degree of antiviral response via type I IFN response is supposedly equal among dsRNA injected fish. These results suggest that type I IFN response rather than sequence-specific RNA interference might involve in the lengthened survival period of fish injected with virus-specific dsRNAs.

Types and Geomorphic Development of Large Landslides in the Kokomeren River Basin, Kyrgyzstan (키르기스스탄 코코메렌강 유역의 대규모 산사태 유형과 지형 발달)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Large landslide is a type of mass movement that causes drastic landform changesin a short period, and it causes huge human and property damage over a large area. The purpose of this study is to categorize the types and characteristics of large landslides around the Kokomeren River basin, Kyrgyzstan and to discuss the geomorphic development after the large landslides. The topographic analysis about a total of 20 landslides documented collapsed volumes of 0.01 to 1.10 km3, height drops of 180 to 1,770 m, and runout distances of 1,200 to 5,400 m. Rock avalanche and rockslide are identified as major types of large-scale landslides in the study area. Rock avalanches can be divided into P-type, J-type, and S-type based on the features of slope failure and kinematic characteristics of rock debris. Landslide synchronistic landforms such as trimlines, transverse ridges, longitudinal ridges, levees, and hummocks are well developed in the rock avalanche. The pieces of evidence of landslide dam, landslide-dammed lake, and remnant outburst flood deposits are observed in the upstream and downstream where the rockslides occurred. The Ak-Kiol landslide dam is the best example of a geomorphic development due to lake spillover and the large landslides were likely to be triggered by huge paleo-seismic events.

Effect of Joint Sets on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체에 작용하는 토압에 대한 절리군의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.59-69
    • /
    • 2015
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint sets as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the induced earth pressure was affected significantly by a joint set depending on the inclusion of the joint inclination angle, which induces a joint sliding condition, but the number of joint sets alone was not important, even though the earth pressure could be increased slightly as the number of joint sets is increased. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the effects of joint sets as well as rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Kim, Kyoung-Ho;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5\sim1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification (자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구)

  • Pham, Chuyen;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.462-472
    • /
    • 2020
  • Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural networks (CNN) in many different image-based classification tasks, there has been increasing interest in taking advantage of CNN to classify geological material. In this study, a feasibility of the deep CNN is investigated for automatically and accurately identifying rock types, focusing on the condition of various shapes and colors even in the same rock type. It can be further developed to a mobile application for assisting geologist in classifying rocks in fieldwork. The structure of CNN model used in this study is based on a deep residual neural network (ResNet), which is an ultra-deep CNN using in object detection and classification. The proposed CNN was trained on 10 typical rock types with an overall accuracy of 84% on the test set. The result demonstrates that the proposed approach is not only able to classify rock type using images, but also represents an improvement as taking highly diverse rock image dataset as input.

Analysis of Seabottom and Habitat Environment Characteristics based on Detailed Bathymetry in the Northern Shore of the East Sea(Gyeongpo Beach, Gangneung) (정밀 해저지형 자료 기반 동해 북부 연안(강릉 경포) 서식지 해저면 환경 특성 연구)

  • Lee, Myoung Hoon;Rho, Hyun Soo;Lee, Hee Gab;Park, Chan Hong;Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.729-742
    • /
    • 2020
  • In this study, we analyze seabottom conditions and characteristics integrated with topographic data, seafloor mosaic, underwater images and orthophoto(drone) of soft-hard bottom area around the Sib-Ri rock in the northern shore of the East Sea(Gyeongpo Beach, Gangneung). We obtained field survey data around the Sib-Ri rock(about 600 m × 600 m). The Sib-Ri rock is formed by two exposed rocks and surrounding reef. The artificial reef zone made by about 200 ~ 300 structures is shown the western area of the Sib-Ri rock. The underwater rock region is extended from the southwestern area of the exposed the Sib-Ri rock with 9 ~ 11 m depth range. The most broad rocky seabottom area is located in the southwestren area of the Sib-Ri rock with 10 ~ 13 m depth range. The study area were classified into 4 types of seabottom environment based on the analysis of bathymetric data, seafloor mosaics, composition of sediments and images(underwater and drone). The underwater rock zones(Type I) are the most distributed area around the Sib-Ri Rock(about 600 m × 600 m). The soft seabottom area made by sediments layer showed 2 types(Type II: gS(gravelly Sand), Type III: S(Sand)) in the areas between underwater rock zones and western part of the Sib-Ri rock(toward Gyeongpo Beach). The artificial reef zone with a lot of structures is located in the western part of the Sib-Ri rock. Marine algae(about 6 species), Phylum porifera(about 2 species), Phylum echinodermata(about 3 species), Phylum mollusca(about 3 species) and Phylum chordata(about 2 species) are dominant faunal group of underwater image analysis area(about 10 m × 10 m) in the northwestern part of the Sib-Ri rock. The habitat of Phylym mollusca(Lottia dorsuosa, Septifer virgatus) and Phylum arthropoda(Pollicipes mitella, Chthamalus challengeri hoek) appears in the intertidal zone of the Sib-Ri rock. And it is possible to estimate the range and distribution of the habitat based on the integrated study of orthphoto(drone) and bathymetry data. The integrated visualization and mapping techniques using seafloor mosaic images, sediments analysis, underwater images, orthophoto(drone) and topographic data can provide and contribute to figure out the seabottom conditions and characteristics in the shore of the East Sea.

The Design and Construction of the Anchorage of Yi Sun-Sin Grand Bridge (이순신대교 앵커리지 설계-시공사례)

  • An, Ik-Kyun;Kim, Kyung-Taek;Seo, Young-Hwa
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.14-25
    • /
    • 2010
  • The Yi Sun-Sin grand bridge is the suspension bridge which connects Myodo and Gwangyang. It is over the main navigation channel of Gwangyang Harbor. South anchorage(AN1, Myodo side) of the bridge is designed as rock anchored type. It sustains using the resistance of the underground rock's mass in Myodo. As this type of anchorage can minimize the exposure of the structure, It is economically efficient and environmentally friendly. North anchorage (AN2, Gwangyang side) is designed as the gravity type. This anchorage is 68 meters in diameter and use its own weight to support. Instead of normal rectangular diaphragm wall, the circular shape diaphragm wall is adopted to the north anchorage. It doesn't need to use internal temporary facilities, so it can significantly improve the constructability of the structure.

  • PDF

Molecular cloning and expression analysis of a C-type lectin in the rock bream, Oplegnathus fasciatus

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • C-type lectins are crucial for pathogen recognition, innate immunity, and cell-cell interactions. In this study, a C-type lectin gene was cloned from the rock bream. The full-length RbCTL cDNA was 729 bp with a 429 bp ORF encoding a 164-residue protein. The deduced amino acid sequence of RbCTL had all of the conserved features crucial for its fundamental structure, including the four cysteine residues involved in sulfide bridge formation and potential $Ca^2+$/carbohydrate-binding sites. RbCTL contains a signal peptide one single carbohydrate recognition domain. It showed 29.4% similarity to the C-type lectin of rainbow trout. RbCTL mRNA was predominately expressed in gill and head-kidney tissue and expressed less in peripheral blood leukocytes, trunk-kidney, spleen, liver, intestine and muscle. Expression of RbCTL was differentially upregulated in rock bream stimulated with LPS, Con A/PMA and poly I:C.