DOI QR코드

DOI QR Code

Molecular cloning and expression analysis of a C-type lectin in the rock bream, Oplegnathus fasciatus

  • Kwon, Mun-Gyeong (Pathology Division, National Fisheries Research and Development Institute) ;
  • Kim, Ju-Won (Department of Marine Biology & Aquaculture, Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Myoung-Ae (Pathology Division, National Fisheries Research and Development Institute) ;
  • Hwang, Jee-Youn (Pathology Division, National Fisheries Research and Development Institute) ;
  • Park, Hyung-Jun (Department of Marine Biology & Aquaculture, Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Chan-Il (Department of Marine Biology & Aquaculture, Institute of Marine Industry, Gyeongsang National University)
  • Received : 2011.10.17
  • Accepted : 2012.01.05
  • Published : 2012.04.30

Abstract

C-type lectins are crucial for pathogen recognition, innate immunity, and cell-cell interactions. In this study, a C-type lectin gene was cloned from the rock bream. The full-length RbCTL cDNA was 729 bp with a 429 bp ORF encoding a 164-residue protein. The deduced amino acid sequence of RbCTL had all of the conserved features crucial for its fundamental structure, including the four cysteine residues involved in sulfide bridge formation and potential $Ca^2+$/carbohydrate-binding sites. RbCTL contains a signal peptide one single carbohydrate recognition domain. It showed 29.4% similarity to the C-type lectin of rainbow trout. RbCTL mRNA was predominately expressed in gill and head-kidney tissue and expressed less in peripheral blood leukocytes, trunk-kidney, spleen, liver, intestine and muscle. Expression of RbCTL was differentially upregulated in rock bream stimulated with LPS, Con A/PMA and poly I:C.

Keywords

References

  1. Arockiaraj, J., Bhassu, S.: Molecular characterization and expression analysis of lily type lectin-1 (OfLTL-1) in rock bream (Oplegnathus fasciatus). Fish Shellfish Immunol. (Article in press).
  2. Dodd, R.B., Drickamer, K.,: Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiol., 11:71R-9R, 2001. https://doi.org/10.1093/glycob/11.5.71R
  3. Drickamer, K.: C-type lectin-like domains. Curr. Opin. Struct. Biol., 9: 585-590, 1999. https://doi.org/10.1016/S0959-440X(99)00009-3
  4. Fujiki, K., Bayne, C.J., Shin, D.H., Nakao, M., Yano, T.: Molecular cloning of carp (Cyprinus carpio) C-type lectin and pentraxin by use of suppression subtractive hybridisation. Fish Shellfish Immunol., 11: 275-279, 2001. https://doi.org/10.1006/fsim.2000.0331
  5. Fujita, T., Matsushita, M., Endo, Y.: The lectin-complement pathway--its role in innate immunity and evolution. Immunol. Rev., 198: 185-202, 2004. https://doi.org/10.1111/j.0105-2896.2004.0123.x
  6. Gish, W., David, J.S.: Identification of protein coding regions by database similarity search. Nature Genetics., 3: 266-272, 1993. https://doi.org/10.1038/ng0393-266
  7. Graham, S., Secombes, C.J., 1988. The production of a macrophage-activating factor from rainbow trout Salmo gairdneri leucocytes. Immunology 65, 293-297.
  8. Graves, B.J., Crowther, R.L., Chandran, C., Rumberger, J.M., Li, S., Huang, K.S., Preskiy, D.H., Familletti, P.C., Wolitzky, B.A., Burns, D.K.: Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature., 367: 532-538, 1994. https://doi.org/10.1038/367532a0
  9. Holmskov, U., Thiel, S., Jensenius, J.C.: Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol., 21: 547-578, 2003. https://doi.org/10.1146/annurev.immunol.21.120601.140954
  10. Honda, S., Kashiwagi, M., Miyamoto, K., Takei, Y., Hirose, S.: Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J. Biol. Chem., 275: 33151-33157, 2000. https://doi.org/10.1074/jbc.M002337200
  11. Huang, C.C., Duffy, K.E., San Mateo, L.R., Amegadzie, B.Y., Sarisky, R.T., Mbow, M.L., 2006. A pathway analysis of poly(I:C)-induced global gene expression change in human peripheral blood mononuclear cells. Physiol Genom. 26, 125-133. https://doi.org/10.1152/physiolgenomics.00002.2006
  12. Janeway, C.A. Jr., Medzhitov, R.: Innate immune recognition. Annu. Rev. Immunol., 20: 197-216, 2002. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  13. Johnson, M.D., Housey, G.M., Kirschmeier, P.T., Weinstein, I.B., 1987. Molecular cloning of gene sequences regulated by tumor promoters and mitogens through protein kinase C. Mol. Cell Biol. 7, 2821-2829.
  14. Kim, J.W., Park, H.J., Baeck, G.W., Park, C.I.: Preliminary EST analysis of immune-relevant genes from the liver of LPS-stimulated rock bream Oplegnathus fasciatus. J. Fish pathol., 23: 229-238, 2010.
  15. Konstantina, N., Ioannis, K.Z.: Molecular cloning and characterization of two homologues of mannose-binding lectin in rainbow trout. Fish Shellfish Immunol., 21: 305-314, 2006. https://doi.org/10.1016/j.fsi.2005.12.007
  16. Kumagai, N., Benedict, S.H., Mills, G.B., Gelfand, E.W., 1988. Induction of competence and progression signals in human T lymphocytes by phorbol esters and calcium ionophores. J. Cell Physiol. 137, 329-336. https://doi.org/10.1002/jcp.1041370217
  17. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}CT$ method. Methods , 25:402-8, 2001. https://doi.org/10.1006/meth.2001.1262
  18. McGreal, E.P.: Martinez-Pomares L, Gordon S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol. Immunol., 41: 1109-1121, 2004. https://doi.org/10.1016/j.molimm.2004.06.013
  19. Mullin, N.P., Hitchen, P.G., Taylor, M.E.: Mechanisms of $Ca^{2+}$ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J. Biol. Chem., 272:5668-5681, 1997. https://doi.org/10.1074/jbc.272.9.5668
  20. Murphy, J.J., Norton, J.D., 1993. Phorbol ester induction of early response gene expression in lymphocytic leukemia and normal human B cells. Leuk. Res. 17, 657-662. https://doi.org/10.1016/0145-2126(93)90070-2
  21. Oh, D.J., Kim, J.Y., Lee, J.A., Yoon, W.J., Park, S.Y., Jung, Y.H.: Complete mitochondrial genome of the rock bream Oplegnathus fasciatus (Perciformes, Oplegnathidae) with phylogenetic considerations. Gene., 392: 174-180, 2007. https://doi.org/10.1016/j.gene.2006.12.007
  22. Okamoto, M., Tsutsui, S., Tasumi, S., Suetake, H., Kikuchi, K., Suzuki, Y.: Tandem repeat L-rhamnose-binding lectin from the skin mucus of ponyfish, Leiognathus nuchalis. Biochem. Biophys. Res. Commun., 333:463-469, 2005. https://doi.org/10.1016/j.bbrc.2005.05.118
  23. Ottinger, C.A., Johnson, S.C., Ewart, K.V., Brown, L.L., Ross, N.W.: Enhancement of anti- Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol., 123: 53-59, 1999. https://doi.org/10.1016/S0742-8413(99)00009-2
  24. Ourth, D.D., Narra, M.B., Simco, B.A.: Comparative study of mannose-binding C-type lectin isolated from channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus). Fish Shellfish Immunol., 23: 1152-1160, 2007. https://doi.org/10.1016/j.fsi.2007.03.014
  25. Park, C.I., Kurobe, T., Hirono, I., Aoki, T.: Cloning and characterization of cDNAs for two distinct tumor necrosis factor receptor superfamily genes from Japanese flounder Paralichthys olivaceus. Dev. Comp. Immunol., 27: 365-375, 2003. https://doi.org/10.1016/S0145-305X(02)00118-0
  26. Qin, L.H., Wang, R.G., Li, S., Li, C.M., 2009. Differentially gene expression profile related to inflammation in endometrial cells induce by lipopolysaccharide. J. Reprod. Contracep. 20, 27-34. https://doi.org/10.1016/S1001-7844(09)60004-3
  27. Robertson, B., 2006. The interferon system of teleost fish. Fish Shellfish Immunol. 20, 172-191. https://doi.org/10.1016/j.fsi.2005.01.010
  28. Soanes, K.H., Figuereido, K., Richards, R.C., Mattatall, N.R., Ewart, K.V.: Sequence and expression of C‐type lectin receptors in Atlantic salmon (Salmo salar). Immunogenetics ., 56: 572-584, 2004. https://doi.org/10.1007/s00251-004-0719-5
  29. Takeshita, T., Goto, Y., Nakamura, M., Fujii, M., Iwami, M., Hinuma, Y. Sugamura, K. 1988. Phorbol esters can persistently replace interleukin-2 (IL-2) for the growth of a human IL-2-dependent T-cell line. J. Cell Physiol. 136, 319-325. https://doi.org/10.1002/jcp.1041360215
  30. Tasumi, S., Ohira, T., Kawazoe, I., Suetake, H., Suzuki, Y., Aida, K.: Primary structure and characteristics of a lectin from skin mucus of the Japanese eel Anguilla japonica. J. Biol. Chem., 277: 27305-27311, 2002. https://doi.org/10.1074/jbc.M202648200
  31. Thompson, J.D., Higgis, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673
  32. Tsutsui, S., Iwamoto, K., Nakamura, O., Watanabe, T.: Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus. Mol. Immunol., 44: 691-702, 2007. https://doi.org/10.1016/j.molimm.2006.04.023
  33. Ulmer, A.J., Flad, H., Rietschel, T., Mattern, T., 2000. Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology 152, 37-45. https://doi.org/10.1016/S0300-483X(00)00290-0
  34. Vasta, G.R., Ahmed, H., Odom, E.W.: Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr. Opin. Struct. Biol., 14: 617-630, 2004. https://doi.org/10.1016/j.sbi.2004.09.008
  35. Vasta, G.R., Ahmed, H., Du, S., Henrikson, D.: Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj. J., 21: 503-521, 2004. https://doi.org/10.1007/s10719-004-5541-7
  36. Vitved, L., Holmskov, U., Koch, C., Teisner, B., Hansen, S., Salomonsen, J., Skjodt, K.: The homologue of mannose-binding lectin in the carp family Cyprinidae is expressed at high level in spleen, and the deduced primary structure predicts affinity for galactose. Immunogenetics ., 51: 955-964, 2000. https://doi.org/10.1007/s002510000232
  37. Wang, H., Song, L., Li, C., Zhao, J., Zhang, H., Ni, D., Xu, W.: Cloning and characterization of a novel C-type lectin from Zhikong scallop, Chamys farreri. Mol. Immunol., 44: 722-731, 2007. https://doi.org/10.1016/j.molimm.2006.04.015
  38. Wang, Y., Gao, B., Tsan, M.F., 2005. Induction of cytokines by heat shock proteins and concanavalin A in murine splenocytes. Cytokine 32, 149-154. https://doi.org/10.1016/j.cyto.2005.09.003
  39. Weis, W.I., Drickamer, K., Hendrickson, W.A.: Structure of a C-type mannose- binding protein complexed with an oligosaccharide. Nature., 360: 127-134, 1992. https://doi.org/10.1038/360127a0
  40. Weis, W.I., Kahn, R., Fourme, R., Drickamer, K., Hendrickson, W.A.: Structure of the calcium-dependent lectin domain from a ratmannose-binding protein determined by MAD phasing. Science., 254: 1608-1615, 1991. https://doi.org/10.1126/science.1721241
  41. Williams, H.R., Macey, B.M., Burnett, L.E., Burnett, K.G.: Differential localization and bacteriostasis of Vibrio campbellii among tissues of the Eastern oyster, crassostrea virginica. Dev. Comp. Immunol., 33: 592-600, 2009. https://doi.org/10.1016/j.dci.2008.10.008
  42. Yin, Z., He, J.Y., Gong, Z., Lam, T.J., Sin, Y.M., 1999. Identification of differentially expressed genes in con A-activated carp (Cyprinus carpio L.) leucocytes. Comp. Biochem. Physiol. Part B 124, 41-50. https://doi.org/10.1016/S0305-0491(99)00095-4
  43. Yousif, A.N., Albright, L.J., Evelyn, T.P.T.: Purification and characterization of a galactose-specific lectin from the eggs of coho salmon (Oncorhynchus kisutch) and its interaction with bacterial fish pathogens. Dis. Aquat. Org., 20: 127-136, 1994. https://doi.org/10.3354/dao020127
  44. Yu, Y.H., Yu, Y.C., Huang, H.Q., Feng, K.X., Pan, M.M., Yuan, S.C., Huang, S.H., Wu, T., Guo, L., Dong, M.L., Chen, S.W., Xu, A.L.: A short-form C-type lectin from Amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J. Immunol., 179: 8425-8434, 2007. https://doi.org/10.4049/jimmunol.179.12.8425
  45. Zhang, H., Robison, B., Thorgaard, G.H., Ristow, S.S.: Cloning, mapping and genomic organization of a fish C-type lectin gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Biochim. Biophys. Acta., 1494: 14-22, 2000. https://doi.org/10.1016/S0167-4781(00)00198-6
  46. Zheng, P.L., Wang, H., Zhao, J.M., Song, L.S., Qiu, L.M., Dong, C.H., Wang, B., Gai, Y.C., Mu, C.K., Li, C.H., Ni, D.J., Xing, K.Z.: A lectin (CfLec-2) aggregating Staphylococcus haemolyticus from scallop Chlamys farreri. Fish Shellfish Immunol., 24: 286-293, 2008. https://doi.org/10.1016/j.fsi.2007.11.014