• Title/Summary/Keyword: rock properties

Search Result 1,220, Processing Time 0.027 seconds

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Stability Analysis for Mine Openings by a Three Dimensional Boundary Element Method-BEAP3D (三次元 境界要素法 BEAP3D에 의한 採掘空洞 安定性 評價)

  • 정소걸;김임호;조영도
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.118-129
    • /
    • 1998
  • A three dimensional boundary element method-BEAP3D was applied to the stability analysis of the mine openings not only to improve the stability during mining operations but also to serve the evaluation of the mine openings for further utilization. Stability analysis on the stability of the room-and-pillar stopes underneath of the old mine openings and the openings to be created by the newly proposed sublevel stoping method at the Nowhado Pyrophyllite Mine, showed that rock mass around the old and new stopes would be stable. Six stopes of a sublevel stoping designed for the Choongmu Limestone Quarry would be stable, too. A sublevel stoping method consisting of six stopes was similarly suggested for the Keumpyung Quartzite Mine. The stability can be guaranteed through out six stopes. Since mining starts from the bottom 1st sublevel to the uppermost sublevel, the safety of the stopes will improve together with the mining process. It would highly be recommended to investigate in-situ rock properties and the rock stresses for future studies. Even though the rock around the uppermost part and bottom of all the stopes have a very high factor of safety, spot reinforcements such as rock bolting would be recommended to mitigate the intermediate and minor principal stresses acting in a tensile mode.

  • PDF

Engineering Geological Characteristics of Sedimentary Rocks at Ulsan Area (울산지역 퇴적암류의 지질공학적 특성)

  • Kim, Kwang-Sik;Kim, Kwang-Yeom;Seo, Yong-Seok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 2007
  • Discontinuities developed in a sedimentary rock mass are the most important factor to determine mechanical properties of the rock mass. Parameters described discontinuities in rock mass generally connote heterogeneity and uncertainty. In this study, probabilistic statistics method was used to determine parameters of discontinuities quantitatively and objectively. The field survey was conducted at 33 sedimentary rock slopes in Ulsan area, according to the suggested methods for the quantitative description of discontinuities in rock mass(ISRM, 1978). The engineering geological characteristics of the sedimentary rocks at Ulsan area was determined as probability distribution function deduced by analyzing parameters of discontinuities.

The mechanical properties of rock salt under cyclic loading-unloading experiments

  • Chen, Jie;Du, Chao;Jiang, Deyi;Fan, Jinyang;He, Yi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.325-334
    • /
    • 2016
  • Rock salt is a near-perfect material for gas storage repositories due to its excellent ductility and low permeability. Gas storage in rock salt layers during gas injection and gas production causes the stress redistribution surrounding the cavity. The triaxial cyclic loading and unloading tests for rock salt were performed in this paper. The elastic-plastic deformation behaviour of rock salt under cyclic loading was observed. Rock salt experienced strain hardening during the initial loading, and the irreversible deformation was large under low stress station, meanwhile the residual stress became larger along with the increase of deviatoric stress. Confining pressure had a significant effect on the unloading modulus for the variation of mechanical parameters. Based on the theory of elastic-plastic damage mechanics, the evolution of damage during cyclic loading and unloading under various confining pressure was described.

SHPB Tests for Rock Dynamic Behavior by Shock Loading (충격하중에 의한 암석의 동적거동 측정시험장치)

  • Park, Chul-Whan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.318-324
    • /
    • 2010
  • Dynamic properties of materials by shock loads such as rock blasting and earthquake are recently attracted in the design of aboveground and underground structures. The advance of measuring devices enables to obtain the whole histories of stress and strain in rock specimen of which the failure is completed in several hundred microseconds. The SHPB has been a popular and promising technique to study the dynamic behavior of rock. And the dynamic compressive, tensile and other test with this experiment system are planned to be Suggested Methods of ISRM. This technical paper is to introduced one study article which focuses the design of 3S (special shaped striker) to produce the half-sine wave to eliminate the problems of the rectangular wave. This article is also describing the advantage of half-sine incident wave and size effect of rock dynamic strength.

Domestic Rock Wool Toxicity Study on Respiratory System and Biopersistence Evaluation in Sprague-Dawely Rats (랫드에 주입된 국내산 암면의 호흡기 독성 및 생체내구성 평가)

  • Chung, Yong Hyun;Han, Jeong Hee;Kang, Min Gu;Lee, Sung Bae;Kim, Hyeon Yeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.127-138
    • /
    • 2009
  • Rock wool, a kind of asbestos substitutes, was analyzed for its physicochemical properties. After fivers of rock wool were instilled into rat lungs, These pathological changes were evaluated. In addition, the fibers in the lungs were counted and characterized after the lungs were treated for electron microscopical analysis. The lungs of rats showed pathological lesions such as granulomatous changes, but these lesions disappeared at 28 days groups after instilled rats. The rock wool fibers in the lungs decreased more 50 % after 28 days instilled into rat lungs. And rock wool showed early change in fiber compositions after 3 days compare with chrysotile showed after 7 days instilled into rat lungs. This study showed that the durability of rock wool in the lungs is more milder than chrysotile.

Experimental study of crack propagation of rock-like specimens containing conjugate fractures

  • Sun, Wenbin;Du, Houqian;Zhou, Fei;Shao, Jianli
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • The presence of defects in nature changes the physical parameters of the rock. In this paper, by studying the rock-like specimens with conjugated fractures, the horizontal angle and length are changed, and the physical parameters and failure modes of the specimens under uniaxial compression test are analyzed and compared with the results of simulation analysis. The experimental results show that the peak strength and failure mode of the rock-like specimens are closely related to the horizontal angle. When the horizontal angle is $45^{\circ}$, the maximum value is reached and the tensile failure mode is obtained. The fracture length affects the germination and propagation path of the cracks. It is of great significance to study the failure modes and mechanical properties of conjugated fracture rock-like specimens to guide the support of fractured rock on site.

The Effect of a Freeze-Thaw Cycle on Rock Weathering: Laboratory Experiments (동결-융해작용에 따른 암석풍화의 특성)

  • YANG, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.21-36
    • /
    • 2011
  • Rock Weathering is a basic of geomorphological evolution as a preparation of materials. Of those, frost shattering has traditionally been considered as the operative process causing rock breakdown in cold regions as well as temperate zone. Each Granite(fresh rock, semi-weathered), Gneiss, Limestone, Dolomite was prepared slab specimens in ten, repeated freeze-thaw cycles of 180 under the -25℃~+30℃, and the changes was observed in physical properties and weathering aspect. Rock shattering was more active in waterlogging conditions rather than atmospheric and soil conditions. Limestone and Dolomite that high porosity are most severely crushed. Gneiss, regardless surface of the crack, joint, fissure and has a lowest rock strength(SHV), was even though no physical changes and their weathering product do not generate, has a very high resistance to weathering.

Estimation of Usable Cut-out Volume Considering the Structural and Engineering Properties of Rock Mass (암반의 구조적 및 공학적 특성을 고려한 가용절취량 산정)

  • 이창섭;홍관석;조태진
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • Structural and geological engineering properties of the rock mass distributed in the Yokmang mountain area were investigated to detenninc the usable cut-out volume and quarrying efficiency. The study area is located in the southern tip of the Yangsan fault system which controls the geological structure of the Kvungsang basin. As a result, the study area is mainly composed of andesicic. rhyolitic. and granitic rocks of the Cretaceous Kyungsang Supergroup and a series of right-handed strike-slip faults is developed along NNE-SSW direction. These regional faults significantly affect the spatial and meclwnical characteristics of joints such as spacing, frequency, and compressive strength. The joint frequency is highest along the fault zones and decreases toward the remote region. Based on the geological information obtained from the field survey, the detailed structure of the Yokmang mountain was analyzed and the volume of the rock mass was assessed. Considering the minimum rock block size required for the construction of a coastal dumping site, potential cut-out volume is then estimated to be 4,018,000m$^3$ the volume % of which is 48% of Yokmang mountain including the soil and weathered rock and 61% of the unweathered rock mass.

  • PDF

Analyzing Rock Descriptors Used by Elementary School Students in Different Task Contexts (과제 맥락에 따른 초등학생들의 암석 기술어(記述語)에 관한 연구)

  • Oh, Phil Seok
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.61-74
    • /
    • 2020
  • The purpose of this study was to compare rock descriptors used by students in two different task contexts and to suggest the characteristics of a task suitable for learning of rocks. Twenty-four 3rd grade students were given descriptive and inferential tasks about three types of sedimentary rocks, and the rock descriptors used by the students were analyzed from a resources-based view (RBV) about students' conceptions. The result showed that the number of students using everyday descriptors to describe properties of the rocks and the frequency of using the everyday descriptors decreased in the inferential task. It was also revealed that the students using disciplinarily more appropriate descriptors were more likely to infer the process of rock formation in scientifically valid ways. By contrast, student inferences lacking scientific validity were mostly those that used everyday descriptors to express properties of the rocks. Based on these findings, it was concluded that inferential tasks would be suitable for student learning of rocks which is to be authentic to the essential features of earth science practices.