• Title/Summary/Keyword: rock mechanics

Search Result 2,070, Processing Time 0.116 seconds

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

Evaluation and Interpretation of the Fracture Toughness of Rocks

  • Baek, Hwanjo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1996.03a
    • /
    • pp.1-10
    • /
    • 1996
  • Fracture toughness of rock materials, which generally violate the fundamental assumptions of LEFM, often depends on the specimen size and test method employed. Hence, a standardized procedure for testing and data interpretation for determining fracture toughness of rock materials is required. Special attention has been given by the International Society for Rock Mechanics (ISRM) to the difficulties in obtaining true fracture mechanics parameters for the wide variety of rock materials. (omitted)

  • PDF

DYNAMIC DESIGN METHODS OF ROCK ENGINEERING

  • Feng, Xia-Ting
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.23-33
    • /
    • 2011
  • The key features of an intelligent and dynamic design methodology for rock engineering projects has been introduced and summarized firstly, which include some new functions such as intelligent recognition of mechanical rockmass parameters, strategies to select modeling methods and codes, integrated feedback modeling and information, and technical auditing in rock engineering design process. Then typical examples of applications of the dynamic design methodology in some large slopes, underground powerhouses in China are summarized. The discussions are given for the future of the methodology.

  • PDF

Modeling or rock slope stability and rockburst by the rock failure process analysis (RFPA) method

  • Tang, Chun'an;Tang, Shibin
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.89-97
    • /
    • 2011
  • Brittle failure of rock is a classical rock mechanics problem. Rock failure not only involves initiation and propagation of single crack, but also is a complex problem associated with initiation, propagation and coalescence of many cracks. As the most important feature of rock material properties is the heterogeneity, the Weibull statistical distribution is employed in the rock failure process analysis (RFPA) method to describe the heterogeneity in rock properties. In this paper, the applications of the RFPA method in geotechnical engineering and rockburst modeling are introduced with emphasis, which can provide some references for relevant researches.

  • PDF

Rock Mechanics Advances for Underground Construction in Civil Engineering and Mining

  • Kaiser, Peter K.;Kim, Bo-Hyun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.3-16
    • /
    • 2008
  • The underground construction and mining are facing many geomechanics challenges stemming from, geological complexities and stress-driven rock mass degradation processes. Brittle failing rock at depth poses unique problems as stress-driven failure processes often dominate the tunnel behaviour. Such failure processes can lead to shallow unravelling or strainbursting modes of instability that cause difficult conditions for tunnel contractors. This keynote address focuses on the challenge of anticipating the actual behaviour of brittle rocks in laboratory testing, for empirical rock mass strength estimation, and by back-analysis of field observations. This paper summarizes lessons learned during the construction of deep Alpine tunnels and highlights implications that are of practical importance with respect to constructability. It builds on a recent presentation made at the $1^{st}$ Southern Hemisphere International Rock Mechanics Symposium held in Perth, Australia, in September this year, and includes results from recent developments.

  • PDF

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.