• Title/Summary/Keyword: rock mass parameters

Search Result 210, Processing Time 0.029 seconds

An Evaluation of Rock Mass Rating System As Design Aids in Korea (RMR 분류법의 국내 적용성 평가)

  • 구호본;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.209-216
    • /
    • 1994
  • Rock mass classifications have played an indispensable role in underground construction for several decades. An important issue in rock mass classifications is the selection of the parameters of greatest significance. There appears to be no single parameter that can fully describe a jointed rock mass for underground construction design. In this paper. We find some problems shen applied rock mass classification for underground construction in domestic, analyze the most significant parameters and parameters correlation influencing the behavior of a rock mass, and suggest the Simplied Rock Mass Rating system based on RMR method for effective underground supports.

  • PDF

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Charts for estimating rock mass shear strength parameters

  • Wan, Ling;Wei, Zuoan;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2016
  • Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

Smart monitoring analysis system for tunnels in heterogeneous rock mass

  • Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Yeom;Schubert, Wulf
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.255-261
    • /
    • 2003
  • Tunnelling in poor and heterogeneous ground is a difficult task. Even with a good geological investigation, uncertainties with respect to the local rock mass structure will remain. Especially for such conditions, a reliable short-term prediction of the conditions ahead and outside the tunnel profile are of paramount importance for the choice of appropriate excavation and support methods. The information contained in the absolute displacement monitoring data allows a comprehensive evaluation of the displacements and the determination of the behaviour and influence of an anisotropic rock mass. Case histories and with numerical simulations show, that changes in the displacement vector orientation can indicate changing rock mass conditions ahead of the tunnel face (Schubert & Budil 1995, Steindorfer & Schubert 1997). Further research has been conducted to quantify the influence of weak zones on stresses and displacements (Grossauer 2001). Sellner (2000) developed software, which allows predicting displacements (GeoFit$\circledR$). The function parameters describe the time and advance dependent deformation of a tunnel. Routinely applying this method at each measuring section allows determining trends of those parameters. It shows, that the trends of parameter sets indicate changes in the stiffness of the rock mass outside the tunnel in a similar way, as the displacement vector orientation does. Three-dimensional Finite Element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters evaluated from the results. The results are compared to monitoring results from alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF

Engineering Geological Characteristics of Sedimentary Rocks at Ulsan Area (울산지역 퇴적암류의 지질공학적 특성)

  • Kim, Kwang-Sik;Kim, Kwang-Yeom;Seo, Yong-Seok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 2007
  • Discontinuities developed in a sedimentary rock mass are the most important factor to determine mechanical properties of the rock mass. Parameters described discontinuities in rock mass generally connote heterogeneity and uncertainty. In this study, probabilistic statistics method was used to determine parameters of discontinuities quantitatively and objectively. The field survey was conducted at 33 sedimentary rock slopes in Ulsan area, according to the suggested methods for the quantitative description of discontinuities in rock mass(ISRM, 1978). The engineering geological characteristics of the sedimentary rocks at Ulsan area was determined as probability distribution function deduced by analyzing parameters of discontinuities.

Rock Mechanics-Major Projects and Research Topics in Korea (암반공학-우리나라에서의 과제와 연구주제)

  • Chung, So-Keul
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.451-471
    • /
    • 2006
  • Major projects and research topics in the field of rock mechanics are analyzed to obtain the following results: $\cdot$ Rock mechanics deals with the behavior of deformation, failure and displacement of the rock and rock mass on the basis of geological basics. Discontinuities in the rock mass are the most important parameters to control the behavior of rock mass around underground openings. $\cdot$ The objective of site investigation and testing is to determine the strength properties of the rock mass and the in situ stress regime. Specimens for laboratory and in situ tests are to be selected in order that the results of the tests give the representative properties oi the rock mass of the site in question. $\cdot$ The result of a numerical model would be better evaluated not quantitatively but qualitatively. The displacement behavior of the rock mass has to be monitored properly for the NATM (New Austrian Tunneling Method) principles. $\cdot$ The stability of rock slope is to be evaluated preferably by back analysis with strength parameters, such as cohesion and friction angle.

A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication Methods (현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰)

  • Kim, Hong-Pyo;Chang, Ho-Min;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.133-147
    • /
    • 2010
  • A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication MethodsThe purpose of this study is to find out rock mass classification method which is practically applicable to a field and to consider a correlation between the new method and the old method. Rock mass is an aggregate of separated blocks. To express the aggregate, the properties of both intact rock and rock mass should be considered. In this study, therefore, parameters for rock mass description are classified into rock strength and rock structure. Indices for parameters evaluation are obtained from old method and the strength and structure property of rock is described by using those indices. Value of 25 is allocated to each parameter obtained. $RMR_{basic}$ =0.86(X=Method)+14.47 is derived between $RMR_{basic}$ and this study and $RMR^*$ = 0.87(X-Method)+9.20 is derived between revised RMR and this study. Coefficient of determination is $R^2$=0.841 and $R^2$=0.846 each.

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.