• Title/Summary/Keyword: rock distribution

Search Result 902, Processing Time 0.04 seconds

Distribution and Origin of Carbonate Sediments near Dok Island: Preliminary Study (독도주변 탄산염퇴적물의 분포와 성인: 예비조사 결과)

  • Woo, Kyug-Sik;Ji, Hyo-Seon;Kim, Lyoun;Jeon, Jin-A;Park, Jae-Suk;Park, Heung-Sik;Kim, Dong-Seon;Park, Chan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.171-180
    • /
    • 2009
  • Based on the constituent analysis of sediments near Dok Island, the origin and sedimentary facies were Investigated. The sediments are mainly from originated from volcanic and volcaniclastic rock fragments derived from Dok Island and carbonate sediments formed by a variety of shallow-dwelling organisms that secreted calcareous skeletons. Carbonate producers include mollusks (bivalves and gastropods), encrusting & branching bryozoans, encrusting & segmented red algae, worm tubes, barnacles, diatoms, sponge spicules and echinoderm fragments. The distribution and relative amount of these constituents are basically dependent upon water depth and grain size even though local variations can be observed within the same depth interval. Five sedimentary facies can be divided: nearshore facies (<20 m), neritic facies ($20{\sim}100m$), upper transitional facies ($100{\sim}200m$), lower transitional facies ($200{\sim}700m$), and hemipelagic facies (>700 m). The sediments that were sampled below the water depth of 2,000 m still contain a significant amount of carbonates (ca. $10{\sim}20%$), implying that the carbonate compensation depth in the East Sea may well exceed this water depth.

A Study on the Distribution, Contents and Types of Stone Inscription of Wuyi-Gugok in China (중국 무이구곡 바위글씨(石刻)의 분포와 내용 및 유형에 관한 연구)

  • Rho, Jae-Hyun;Cheng, Zhao-Xia;Kim, Hong-Gyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.115-131
    • /
    • 2020
  • Through literature research and field investigation, this paper attempts to study the distribution, morphology and the typification of the visual and perceptual stone inscription in Wuyi-Gugok of China. The results are as follows: First, there are 350 stone inscriptions in total from the 1st Gok to 9th Gok in Wuyi-Gugok. Second, according to the analysis of the stone inscription distribution, 74(21.2%) stone inscriptions in the 5th Gok, 67(19.2%) in the 6th Gok, 65(18.6%) in the 1st Gok, 60(17.2%) in the 2nd Gok and 53(15.2%) in the 4th Gok are confirmed. The above five Goks contain 319(91.1%) stone inscriptions, so they have rich cultural landscape. Third, according to the survey, the number of the stone inscriptions existed in the Sugwangseok of the 1st Gok are 41(22.6%), in the Homagan of Cheonyubong of the 6th Gok are 29(8.3%), in the Jesiam of the 4th Gok are 23(6.6%), in the Nyeongam of the 2nd Gok are 22(6.3%), in the Hyangseongam of the 6th Gok are 21(6%), in the Unwa of the 5th Gok are 19(5.4%), in the Bokhoam of the 5th Gok are 18(5.1%), in the Eunbyeongbong of the 5th Gok are 17(4.9%), in the Daejangbong of the 4th Gok are 14(4%), in the Daewangbong of the 1st Gok and the Geumgokam of the 4th Gok are 12(3.4%). Thus, a total of 228 (65.1%) stone inscriptions are concentrated in these 11 sites, which represent the popularity and cultural value of these rocks. Fourth, the stone inscription of Wuyi-Gugok, praising the landform and topographical geological landscape of Mount Wuyi, mainly describe the scenic name of each Gok related to Zhu Xi's Gugok culture, appreciate Zhu Xi's tracks and the stone inscription in the sacred land of Neo-Confucianism culture, and also record the Confucian edification of mencius thoughts, Muigun(武夷君) and the myths and legends related to the site names of Wuyi mountain, which can remind people of the worldview of the celestial paradise where the gods live and the fairyland of the land of peach blossoms. In addition, it indicates that the historical and cultural landscape, which is full of colorful history and myths and legends, including allusions related to Confucian, buddhist and Taoist celebrities and the ancestor ancient things related to traditional culture of China is very diverse. Fifth, the results of the classification, based on the content of the stone inscription in Wuyi-Gugok, are classified as the scenery name inscription, the praise scene inscription, the recording travel inscription, the recording event inscription, the philosophy inscription, the expressing emotion inscription, the religion inscription, the inscription for auspiciousness, the slogan and expressing ambition inscription and the official document notice inscription, among which there are 102(29.1%) praise scene inscriptions, 93(26.6%) scenery name inscriptions and 61(17.4%) recording travel inscriptions. The stone inscriptions of Wuyi-Gugok have the characteristics of the special emphasis on scenery names, landscape praise and commemorative tours. Sixth, the analysis of the intertext between the 「Figure of Wuyi-Gugok」 and Wuyi-Gugok rock letters, in the study found that the method of propagation between media was mostly the method of propagation of quotations and maintained intermedia through extension, repetition, extension, and compression.

Finite element analysis of the effects of a mouthguard on stress distribution of facial bone and skull under mandibular impacts (하악골 충격시 안면 두개골의 응력분산양상에 미치는 구강보호장치의 역할에 관한 유한요소법적 연구)

  • Noh, Kwan-Tae;Kim, Il-Han;Roh, Hyun-Sik;Kim, Ji-Yeon;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of a mouthguard on stress distribution under mandibular impact. Materials and methods: The FEM model of head consisted of skull, maxilla, mandible, articular disc, teeth, and mouthguard. The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were vertical, oblique ($45^{\circ}$), and horizontal. The impact load was 800 N for 0.1 sec. Results: When vertical impact was applied, the similar stress and the distribution pattern was occurred without the relation of the mouthguard use (P>.05). The model with mouthguard was dispersed the stress to the teeth, the facial bone and the skull when the oblique ($45^{\circ}$) impacts were happened. However, the stress was centralized on the teeth in the model without mouthguard(P<.05). The model with mouthguard was dispersed the stress to the teeth, the facial bone and the skull when the horizontal impacts was occurred. However, the stress was centralized on the teeth without mouthguard (P<.05). For all impact loads, stress concentrated on maxillary anterior teeth in model without mouthguard, on the contrary, the stress was low in the model with mouthguard and distributed broadly on maxillary anterior teeth, facial bone, and skull. Conclusion: The mouthguard was less effective at shock absorbing when vertical impact was added. However, it was approved that mouthguard absorbed the shock regarded to the oblique ($45^{\circ}$) and horizontal impact by dispersing the shock to the broader areas and decreasing the stress.

The Preliminary Analyses on Damage Types of Stone Hertage induced by Natural Hazard, Korea (석조문화재의 자연재해 피해양상 예비분석)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Min-Seok;Yi, Sang-Heon;Kim, Jeong-Chan;Nahm, Wook-Hyun;Yang, Yun-Sik
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The severe damage of cultural heritages induced by natural hazards like heavy rain has been dramatically increased since 1990. The number of the repair works of stone heritage of 2005 was six times as many as those of 1986 year. Especially the ratio of the repair works of Gyeongsang Province and Jeolla Province stood 63% of those of all over the country. Since 1990, the typhoons usually struck the southern part of Korea and went northward. The heavy damage of stone heritages in two provinces was caused by them. We made a preliminary survey the stone heritages that exposed to the natural hazards on the basis of repair works of them and a field survey. The analysis results indicate that the natural hazards such as landslide and soil disaster of the stone heritages related to a sloping surface stood 58% of all kind of natural hazards. The reasons are caused by the 59 % of all the stone heritages distributed in a sloping surface resulted in natural hazards like landslide and soil disaster. The bases of stone heritages can be easily eroded by the surface water with high energy induced by heavy rainfall. Most of the stone heritages like Maebul were engraved on a natural rock wall(outcrop). But some of them engraved on rolling stones are very vulnerable in a change of a base condition caused by erosion and ground subsidence and they can be tilted or fell down. The distribution of the stone heritages vulnerable in natural hazard is related to that of the rainfall distribution compounded five typhoons after 1990. Most of them are included in level two on the rainfall distribution map except those of Taean peninsula and some of Gyeonggi Province. They seem to be rather related to the rainfall distribution of the Typhoon Olga.

  • PDF

The Study on the Debris Slope Landform in the Southern Taebaek Mountains (태백산맥 남부산지의 암설사면지형)

  • Jeon, Young-Gweon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.77-98
    • /
    • 1993
  • The intent of this study is to analyze the characteristics of distribution, patter, and deposits of the exposed debris slope landform by aerial photography interpretation, measure-ment on the topographical maps and field surveys in the southern part Taebaek mountains. It also aims to research the arrangement types of mountain slope and the landform development of debris slopes in this area. In conclusion, main observations can be summed up as follows. 1. The distribution characteristics 1)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of intrusive rocks with the talus line. 2)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of inrtusive rocks with the talus line. 2) From the viewpoint of distribution altitude, talus is mainly distributed in the 301~500 meters part above the sea level, while the block stream is distributed in the 101~300 meters part. 3) From the viewpoint of slope oriention, the distribution density of talus on the slope facing the south(S, SE, SW) is a little higher than that of talus on the slope facing the north(N, NE, NW). 2. The Pattern Characteristics 1) The tongue-shaped type among the four types is the most in number. 2) The average length of talus slope is 99 meters, especially that of talus composed of hornfels or granodiorite is longer. Foth the former is easy to make free face; the latter is easdy to produce round stones. The average length of block stream slope is 145 meters, the longest of all is one km(granodiorite). 3) The gradient of talus slope is 20~45${^\circ}$, most of them 26-30${^\croc}$; but talus composed of intrusive rocks is gentle. 4) The slope pattern of talus shows concave slope, which means readjustment of constituent debris. Some of the block stream slope patterns show concave slope at the upper slope and the lower slope, but convex slope at the middle slope; others have uneven slope. 3. The deposit characteristics 1) The average length of constituent debris is 48~172 centimeters in diameter, the sorting of debris is not bad without matrix. That of block stream is longer than that of talus; this difference of debris average diameter is funda-mentally caused by joint space of bedrocks. 2) The shape of constituent debris in talus is mainly angular, but that of the debris composed of intrusive rocks is sub-angular. The shape of constituent debris in block stream is mainly sub-roundl. 3) IN case dof talus, debris diameter is generally increasing with downward slope, but some of them are disordered and the debris diameter of the sides are larger than that of the middle part on a landform surface. In block stream, debris diameter variation is perpendicularly disordered, and the debris diameter of the middle part is generally larger than that of the sides on a landform surface. 4)The long axis orientation of debris is a not bad at the lower part of the slope in talus (only 2 of 6 talus). In block stream(2 of 3), one is good in sorting; another is not bad. The researcher thinks that the latter was caused by the collapse of constituent debris. 5) Most debris were weathered and some are secondly weathered in situ, but talus composed of fresh debris is developing. 4. The landform development of debris slopes and the arrangement types of the mountain slope 1) The formation and development period of talus is divided into two periods. The first period is formation period of talus9the last glacial period), the second period is adjustment period(postglacial age). And that of block stream is divided into three periods: the first period is production period of blocks(tertiary, interglacial period), the second formation period of block stream(the last glacial period), and the third adjustment period of block stream(postglacialage). 2) The arrangement types of mountain slope are divided into six types in this research area, which are as follows. Type I; high level convex slope-free face-talus-block stream-alluvial surface Type II: high level convex slope-free face-talus-alluvial surface Type III: free face-talus-block stream-all-uvial surface Type IV: free face-talus-alluval surface Type V: talus-alluval surface Type VI: block stream-alluvial surface Particularly, type IV id\s basic type of all; others are modified ones.

  • PDF

Geological Structures and Geochemical Uranium Anormal Zone Around the Shinbo Mine, Korea (신보광산 주변지역의 지질구조와 우라늄 지화학 이상대)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper examined the characteristics of ductile and brittle structural elements with detailed mapping by lithofacies classification to clarify the relationship between the geological structure and the geochemical high-grade uranium anormal zone and to provide the basic information on the flow of groundwater in the eastern area of Shinbo mine, Jinan-gun, Jeollabuk-do, Korea. It indicates that this area is mainly composed of Precambrian quartzite, metapelite, metapsammite, which show a zonal distribution of mainly ENE-WSW trend, and age unknown pegmatite and Cretaceous porphyry which intrude them. But the Cretaceous Jinan Group which unconformably covers them, contrary to assumption, could not be observed. The main ductile deformation structures of Precambrian metasedimentary rocks were formed at least through three phases of deformation [ENE striking regional foliation (D1) -> ENE or EW striking crenulation foliation (D2) -> WNW or EW trending open, tight, kink folds (D3)]. The predominant orientation of S1 regional foliation strikes ENE and dips south, being similar to the zonal distribution of Precambrian metasedimentary rocks. Most predominant orientation of high-angled brittle fracture (dip angle ${\geq}45^{\circ}$) [ENE (frequency: 24.3%) > NS (23.9%) > (N)NW (18.8%) > WNW (16.9%) > NE (16.1%) fracture sets in descending frequency order], which is closely related to the flow of groundwater, strikes ENE and dips south. It also agrees with the zonal distribution of metasedimentary rocks and the predominant orientation of S1 regional foliation. The next one strikes NS and dips east or west. Considering the controlling factor of the geochemical uranium anormal zone in the Shinbo mine and its eastern areas from the above structural data. the uranium source rock in these areas might be pegmatite and the geochemical uranium anormal zone in the Sinbo mine area could be formed by an secondary enrichment through the flow of pegmatite aquifer's groundwater into the Sinbo mine area like the previous research's result.

Sorting and Abrasion Processes on Gravel Beach of Jeongdo-ri, Wando, Korea (한국 남해 완도 정도리 자갈 해빈의 퇴적작용)

  • 고영이;박용안;최강원
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.27-39
    • /
    • 1993
  • The shingle beach as a typical pocket beach located in Jeongdo-ri, Wando, Cheolanam-do, Korea has been investigated in terms of textural characteristics, mainly gravel shape and roundness. In the Jeongdo-ri gravel beach, changes of beach profile after storm weather and textural parameters of gravels were observed and measured from May 1992 to March 1993. Beach profile is divided into two different Fair-weather zone and Storm-weather zone influenced by dynamic condition of wave energy. The former is affected by wave and tide under fair-weather condition, the latter seems to be formed under storm-weather condition. Each zone comprises a series of beach faces and berms formed by continuous sedimentary processes of swash, overwash and backwash. Storm-weather zone is subdivided into three groups having a pair of beach face and berm respectively. Mean sizes of berm gravel(45.5 mm -123.6 mm) are coarser than gravels of beach face (36.8 mm - 78.3 mm) in fair-weather zone. On the other hand, in storm-weather zone, gravels of berms (33.1 mm -82.5 mm) are finer than those of beachfaces (46.2 mm - 105.2 mm). The proportion of disc shaped gravels of berm (50.0% - 58.5 %) is higher than that of beachface (45.9 % - 51.3 %) in each subzone except C-group of storm-weather zone. And the proportion of the equant shaped gravel increases about up to 10% seaward. Therefore, shore-normal distribution of gravels seems to be affected by shape and size sorting effects. Shore-parallel distribution pattern of gravel shape is more distinctive than size distribution patterns. That is, disc and blade shaped particles decrease up to 20% and 13% respectively, and equants increase up to 34% to the westward. Gravels plotted on Sneed and Folk's triangular diagram are more compacted and elongated with decreasing size. Therefore primary gravels are shaped by characteristics of country rock e.g. cleavage, joint etc., and secondary are affected by sorting and size-controlled process evolution by wave action.

  • PDF

The Present Status and Characteristics of Landscape Components of Gugokwonlim Created by Classical Scholars of Joseon Dynasty (조선선비가 설정한 구곡원림의 현황과 경물 특성)

  • Rho, Jae-Hyun;Choi, Yung-Hyun;Kim, Sang-Beum
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.37-47
    • /
    • 2018
  • This study was attempted to understand present status and characteristics of landscape components of the domestic Korean Gugokwonlim created by the classical scholars in the Joseon Dynasty. The results are as follows. First, Distribution of Gukokwonlim in Korea shows that 55(51.4%) are located in Daegu and Gyeongsangbuk-do, and 22(20.56%) are located in Chungcheongbuk-do. Concentrated locations of Gugok are on the part of Baekdudaegan, from Sobaeksan mountain to Sokrisan mountain via Wolaksan mountain, and the Nakdong River basin of the Nakdong vein in the right bank. This consideration seems to be closely related to the academy of Yeongnam Confucianism and the their trend of Wonrim enjoyment. Second, according to the result of examining the distribution of Gugok according to the basic local government authority, The biggest number of the Gugok places(10 places, 9.35%) are located in Andong, which is called 'the capital of Korean spiritual culture.' Additionally in order, 9 places(9.45%) is located in Goesan, 8 places(7.48%) in Mungyung, 6 places(5.61%) in Bonghwa, and 5 places(4.67%) in Yeongju. Third, in order to the creating time of Gugokwonlim, 33 (33.0%) were created in $18^{th}$ century, and other 33 (33.0%) were created in $19^{th}$ century. In addition, 14 were created during $20^{th}$ century, while 13 were created in $17^{th}$ century. And 4 were created in $16^{th}$ century. Respectively. great number of $18^{th}$ and $19^{th}$ centuries shows that many(66.0%) Gugokwonrim were created between late 18th to 19th centuries. Fourth, There were 97(90.65%) of 'Gugok' in the form of collecting type, and a total number of bottom-up style Gugok were 99(92.5%) while top-down style Gugok were 8(7.5%). Fifth, Among the contents of Gugok, 67 were found in pome of Gugok(64.49%), 29 caved letters in rock(27.10%), and 16 in painting of Gugok(14.95%). Sixth, The most emerged landscape components of Gugok was Dae(臺) 124(13.05%), followed by Am(巖) 115[11.2%, including of Am(岩)] 115(11.2%), and Dam(潭) 73(7.68%), Jeong(亭) 48(5.05%), Dong(洞) 39(4.10%), San(山) 36(3.78%), Am(岩, rocks) 31(3.26 %), Bong(峯, peaks) 27(2.84%), Yeon(淵) 23(2.42%) and Chun(川) and Tan(灘) 22(2.31%). Mostly, common landscape components of Gugok are entrusted natural things. It is expected that more studies about the analysis of characteristics of Gugok's positioning types considering total distance and a gradient are required to understand more clearly characteristics and location distribution of true Gugok and its landscape components.

Ecological Study on Poisonous Snake and Investigation of the Venom Characteristics, Snakebiting Frequenty in Korea (한국산 독사의 생태학적 특징 및 독성, 교상빈도에 관한 조사, 연구)

  • Shim, Jae-Han;Son, Young-Jong;Lee, Sang-Seob;Park, Kyung-Seok;Oh, Hee-Bok;Park, Young-Do
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.58-77
    • /
    • 1998
  • Four species(25%) of Viperidae(Agkistrodon brevicaudus, Agkistrodon ussuriensis, Agkistrodon saxatilis) and Cloubridae(Rhabdophis tigrenus tigrenus) were Korean poisonous snake. Copulation season of these species was from July to August. Reproduction mode of genus Agkistrodon species was ovoviviparous but Rhabdophis tigrinus tigrinus was the other pattern of oviparous. Optimal movement temperature range was from 20$\circ $C to 29$\circ $C(March~September). Wjen atmosphere temperature was below 10$\circ $C, at that time they hibernate at the ground, rock bottom, stone wall and embankment around the end of a field. The venom of these snakes consist mainly Hematoxin, Cytolysin, Neurotoxin and Cardiotoxin of poisonous liquids. These material injection to animal cause systemic syndrome such as Dizziness(25.7%), Vomitting(23.1%), Fever(22%), Visual trouble(18%), Headace(17.7%), Dyspnoea(17.6%) and bring about other local syndrome such as Discoloration(54.2%), Bleeding(20.2%), Bullae(10.7%) and Skin ulcer(!0.8%). The annual distribution was appeared to decrease 1972 after 1992 and average snakebiting patients was 25.6 per year, but practically total estimated snakebiting was 2,700 per year. The seasonal distribution was most frequent in August(25%), and mortality was 1.8%(26 per 1,430). The sex ratio was 2:1 and according to age distribution, it was most prevalent at one's fifties(19%). The most frequent place where the accident happened was the field(48.2%) and most predilection site of the body for victim were hand(47.8%) and foot(39.5%), Commonly bite snake were Agkistrodon ussuriensis(27.1%), Agkistrodon brevicaudus(22.6%) and Agkistrodon saxatilis(9.6%) but 40.7% of species could not be identified. Treatment of antivenin patient was 75.9% (1,068/1,407).

  • PDF

Evaluation on the Restoration and Conservation of Natural Monument Species, Hemibarbus mylodon (Pisces: Cyprinidae: Gobioninae) in Geumgang River Upstream Area (금강 상류역의 천연기념물 어름치의 복원 평가 및 보전방안)

  • Ha-Yun Song;Yeong-Ho Kwak;Chang-Gi Hong;Su-Jeong Gwon;Jeong-Bae Kim;Wan-Ok Lee
    • Korean Journal of Ichthyology
    • /
    • v.36 no.3
    • /
    • pp.240-252
    • /
    • 2024
  • The distribution status of the nature monument species, Hemibarbus mylodon, was investigated from 2021 to 2024 in Geumgang River and Mujunamdae Stream (a tributary of the Geumgang River). In 2021 to 2023, five individuals from Gemgang River upstream were collected by Geumsan-gun, Chungchangnam-do. In 2021 to 2024, 1,592 induviduals juvenile from seven sites were collected by surveying 15 sites from Mujunamdae Stream. The main habitat of juvenile was about 0.3~1.5 meters water deep, 0.14~0.16 meters per second in the middle-upper stream of rock and sand bottom with slow rapids and pools. The age groups for H. mylodon estimated by the frequency distribution of total length in after spawning season (May) to October indicated the 10~65 mm is 0-year old, 75~90 mm is 1-year old group. In addition, over the 120 mm group is 2-years old, the 190~250 mm is more than 3-years old group. In 2024, we identified 35 spawning place from six sites were sites were collected by surveying 15 sites. Spawning place at the river bottom were top of the rapids, 30~60 cm (mean 48.2 cm) water deep, and the place was covered with stone and gravel, water velocity was 0.13~0.34 (mean 0.25 m/sec) meter per second. The spawning place size of the gravel piles was as follows: length 35~48 cm (mean 40.7 cm), width 25~37 cm (mean 34.5), and height 5~12 cm (mean 8.6 cm). Thus, H. mylodon reintroduced to Mujunamdae Stream has successfully settled down and increase in abundance within the natural habitat.