• Title/Summary/Keyword: rock classification system

Search Result 126, Processing Time 0.022 seconds

Applicaton of a Geomechanical Classification for Rock Slope (암반 사면에 대한 새로운 암반 분류안의 적용)

  • 김대복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.215-227
    • /
    • 1994
  • Rock Mass classifications have been developed in many European countries. The most widely used classification methods are the Rock Mass Rating (RMR) system proposed by Bieniawski(1973) and the Q-system developed By Barton et al. (1974). These methods are also adopted at many mountain tunnels and subway sites in our country. Here, a geomechanical classification for slopeds in rock, the "Slope Mass Rating"(SMR) is presented for the preliminary assessment of slope stabiliyt. This method can be applied to excavation and support design in the front part of tunnel and cutting area as a guide line and recommendation on support methods which allow a systemmetic use of geomechanical classification for rock slopes.

  • PDF

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

A Suggestion of a New Rock Mass Classification System (새로운 암반분류법의 제안)

  • Kim, Min-Guon;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.43-53
    • /
    • 2008
  • The rock mass classification systems used in Korea are not standardized. And also the criteria values differ between agencies. So different opinions for rock mass classification can occur among engineers who participate in each design process. In this research, a new rock mass classification system was suggested to correct these problems. For this purpose, the criteria used in the Korean agencies were compared with the criteria used in foreign agencies and standard criteria were selected. Thereafter rational and objective criteria values were suggested quantitatively for the new classification system.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • 최재화;조철현;류동우;김학규;서백수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.265-272
    • /
    • 2003
  • In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.

  • PDF

A Geostatisitical Study Using Qualitative Information for Multiple Rock Classification II. Application (다분적 암반분류를 위한 정성적 자료의 지구통계학적 연구- II. 응용)

  • 유광호
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • The application of a multiple rock classification method, which is a generalization of a binary rock classification, is studied in this paper. In particular, this paper shows how to incorporate qualitative data through a case study. The method suggested in this paper can be effectively used for a systematic multiple rock classification such as RMR system developed by Bieniawski. It will be very useful for rock classifications. In addition, it is known that the expected cost of errors can be atopted to indicate how well a investigation plan is made.

  • PDF

Suggestion of New Rock Classification Method Using the Existing Classification Method (기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안)

  • SunWoo Choon;Jung Yong-Bok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Rock mass classification systems such as RMR and Q system have been widely served as a simple empirical approach for the design of various rock mass structures in the stage of site survey as well as under the construction. For the RQD determination, the boring is partially carried out and what is more, the survey boring is not normally carried out under construction. Therefore RQD is frequently determined by empirical method or indirect method. Since it is difficult to determine the discontinuity characteristics such as RQD, spacing, persistence, filling and so on, it is essential to develop suitable and simple systems without drilled core and a cert 없 n number of representative parameters. One of the primary objectives of the classification systems for a practicing engineer has been to make it simple to use as a preliminary design tool for the structures in rock mass. In the present study, the modifications for both the RMR and GSI system are suggested by authors to introduce new classification system as well as to improve the scope of some of the existing classification systems for a practicing engineer.

Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image (편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가)

  • Sim, Ho;Jung, Wonwoo;Hong, Seongsik;Seo, Jaewon;Park, Changyun;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.309-316
    • /
    • 2022
  • In order to minimize the human and time consumption required for rock classification, research on rock classification using artificial intelligence (AI) has recently developed. In this study, basic volcanic rocks were subdivided by using polarizing microscope thin section images. A convolutional neural network (CNN) model based on Tensorflow and Keras libraries was self-producted for rock classification. A total of 720 images of olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt reference specimens were mounted with open nicol, cross nicol, and adding gypsum plates, and trained at the training : test = 7 : 3 ratio. As a result of machine learning, the classification accuracy was over 80-90%. When we confirmed the classification accuracy of each AI model, it is expected that the rock classification method of this model will not be much different from the rock classification process of a geologist. Furthermore, if not only this model but also models that subdivide more diverse rock types are produced and integrated, the AI model that satisfies both the speed of data classification and the accessibility of non-experts can be developed, thereby providing a new framework for basic petrology research.

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

A study on rock mass classification in the design of tunnel using multivariate discriminant analysis (다변량 판별분석을 통한 터널 설계시의 암반분류 연구)

  • Lee, Song;Ahn, Tae Hun;You, Oh Shick
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.237-245
    • /
    • 2004
  • In designing a tunnel, RMR has been widely used to classify rock mass and to decide the support pattern according to the class of rock mass. However, this RMS system can't help relying on the empirical judgment of engineers who use variables which can be obtained only through consideration of the site conditions. In actuality, it is impossible to consider all the rating factors of RMS when using RMR system at the stage of designing. Therefore, in order to confirm possibility of RMR by use of only the quantitative factors for designing, this paper has done discriminant analysis. Rock strength or RQD has high coefficient of correlation with RMR value, and in consideration of the existing standards for rock mass classification, rock intensity and RQD are important factors for classification of rock mass. Through rock mass classification by the existing RMR system and rock mass classification by the discriminant analysis which has considered two variables only, the discriminant analysis using the rock intensity as an independent variable has shown 74.8% accuracy while the discriminant analysis using RQD as an independent variable has shown 74.3% accuracy. In case of the discriminant analysis which has considered both rock intensity and RQD, it has shown 82.5% accuracy. The existing cases have shown 40.3% accuracy at the stage of designing in which all the RMR factors are considered. It means that at the stage of designing, RMR system can work only with the rock intensity and RQD.

  • PDF