• Title/Summary/Keyword: rock block analysis

Search Result 97, Processing Time 0.025 seconds

Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA) (삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.158-170
    • /
    • 2002
  • Since the development of Discontinuous Deformation Analysis (DDA) by Shi (1984), there has been much improvement in the theory and programs. These, however, are all based on the assumption of a two-dimensional plane strain or plane stress state; and because a rock block system is a three-dimensional problem, a two-dimensional analysis has limited application. So a three-dimensional analysis is required in the design of rock slopes and underground spaces where three-dimensional discontinuities dominate stability. In this study three-dimensional DDA program is developed using the Shi's two-dimensional theory and program, and the two cases of three-dimensional block are analysed. The program is applied to one sliding-face blocks and wedge sliding and it gives the good results comparing to the exact solution. Multi-block cases will be analysed for many other application soon.

Estimation of Internal Friction Angle by the Back Analysis on Collapsed Rock Slope (붕괴된 암반사면에서 역해석에 의한 내부마찰각의 추정)

  • 이달원;김갑중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.172-182
    • /
    • 2003
  • In this study, the back analysis was performed by means of stereo-net, plane failure and block failure method to collapsed fields among the rock slopes designed by standardized criterion, and the internal frictions from the back analysis were compared with those used to reinforcement design. It was concluded that in the result of the analysis by means of stereo net, plain failure and block failure methods, the internal frictions used to re-design of collapsed slope underestimated 10$^{\circ}$, 5$^{\circ}$ and 10$^{\circ}$ in average. At present, the internal friction on the design is used the experience value according to the state of weathering, but internal friction angle by the back analysis on collapsed slope with various methods were more reliable values than those from the present method. And it was concluded that re-design was made extravagantly because the internal friction used to re-design for reinforcement of the collapsed slope was less than back analysis.

New Observational Design and Construction Method for Rock Block Evaluation of Tunnels in Discontinuous Rock Masses (불연속성 암반에서의 터널의 암반블럭 평가를 위한 신 정보화설계시공법)

  • Hwang Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.1-10
    • /
    • 2006
  • Rock masses in nature include various rock discontinuities such as faults, joints, bedding planes, fractures, cracks, schistosities, and cleavages. The behavior of rock structures, therefore, is mainly controlled by various rock discontinuities. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which cannot be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the rock excavation. The observational design and construction method of tunnels in rock masses is becoming important recently. In this paper, a new observational design and construction method for rock block evaluation of tunnels in discontinuous rock masses is proposed, and then applied to the tunnel based on actual rock discontinuity information observed in the field. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed far the new observational design and construction method. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports. The effectiveness of the proposed observational design and construction method has been verified by the confirmation of key block during the enlargement excavation.

Study on the stability of tunnel and rock mass classification in Danyang limestone quarry (단양 석회석 광산터널의 암반 평가 및 안정성 연구)

  • ;Choon Sunwoo;Kong Chang Han;yeon-jun Park
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 1996
  • In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.

  • PDF

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.

Analysis of Parameters to Influence on Rock Fragmentation in Bench Blasting (벤치발파에서 암석 파쇄도에 영향을 미치는 요인 분석)

  • 최용근;이정인;이정상;김장순
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In bench blasting, rock fragmentation is one of the most important factors determining productivity. Rock fragmentation could be affected by various conditions and these were hewn that rock joint conditions and in-situ block sizes were the biggest effect on it. This research is focused on what or how to influence on rock fragmentation according to relation between blasting conditions and the in-situ rock conditions such as rock joint conditions and in-situ block size. Field measurements were carried out in 3 open pit limestone mines, where in-situ rock conditions and blasting conditions were fully investigated. The results show that the parameters interact with blasting conditions complicatedly and especially in-situ block size has bigger effects. Dip direction of major joint set also can affect on fragmentation. Mean fragment size become smallest when dip direction of major joint set is about $30^{\circ}$ with the bench direction. The reason is considered to be come from difference of propagation paths of elastic wave.

A scheme of tunnel design considering rock discontinuities (불연속면을 고려한 터널의 설계 및 보강 방안)

  • 문상조;허도학;장석부
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.231-237
    • /
    • 2001
  • This paper presents some proposed methods for discontinuum analysis with rock discontinuities data acquisited in tunnel design stage. The limit equilibrium method for rock block sliding and falling proposed in this paper can consider the tunnel excavation and support stage, and, to the extent, the standard deviations and means of joint set orientation. Simple Distinct Elemet modelling methods are recommended in estimating the stability of tunnels in jointed rock masses. Because, the simple models are likely to show more consistent and clear than very complex model with finite joint length and joint deviation parameters.

  • PDF

Removability and Stability Analysis Method of Rock Blocks Considering Discontinuity Persistence in Tunnel Constructions (터널시공에서의 불연속면의 연속성을 고려한 암반블럭의 거동성 및 안정성 해석기법)

  • Hwang, Jae-Yun;Ohnishi, Yuzo;Nishiyama, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2003
  • Previous analytical models for key blocks have been based on the assumption of infinite persistent discontinuities. In this paper, a key block analysis method considering the finite persistence of discontinuities is proposed as a stability evaluation method in tunnel constructions, and then applied to an actual example site. Three-dimensional rock block identification with consideration of the persistence of discontinuities is performed by using discontinuity disk model. The removability and stability analyses of rock blocks formed by the identification method are performed. The identification method can handle convex and concave shape blocks. In order to demonstrate the applicability of this developed numerical method to the stability evaluation in tunnel constructions, the analytical results are examined and compared one another.

Analysis of Rock Slope Behavior Utilizing the Maximum Dip Vector of Discontinuity Plane (불연속면의 최대경사벡터를 활용한 사면거동해석)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.332-345
    • /
    • 2019
  • Maximum dip vector of individual joint plane, which can be uniquely defined on the hemispherical projection plane, has been established by considering its dip and dip direction. A new stereographic projection method for the rock slope analysis which employs the maximum dip vector can intuitively predict the failure modes of rock slope. Since the maximum dip vector is uniquely projected on the maximum dip point of the great circle, the sliding direction of discontinuity plane can be recognized directly. By utilizing the maximum dip vector of discontinuity both the plane sliding and toppling directions of corresponding blocks can be discerned intuitively. Especially, by allocating the area of high dip maximum dip vector which can form the flanks of sliding block the potentiality for the formation of virtual sliding block has been estimated. Also, the potentiality of forming the triangular-sectioned sliding block has been determined by considering the dip angle of joint plane the dip direction of which is nearly opposite to that of the slope face. Safety factors of the different-shaped blocks of triangular section has been estimated and compared to the safety factor of the most hazardous block of rectangular section. For the wedge analysis the direction of crossline of two intersecting joint planes, which has same attribute of the maximum dip vector, is used so that wedge failures zone can be superimposed on the stereographic projection surface in which plane and toppling failure areas are already lineated. In addition the maximum dip vector zone of wedge top face has been delineated to extract the wedge top face-forming joint planes the orientation of which provides the vital information for the analysis of mechanical behavior of wedge block.