• 제목/요약/키워드: robustness design

검색결과 1,207건 처리시간 0.03초

Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse

  • Jiang, Jian;Zhang, Qijie;Li, Liulian;Chen, Wei;Ye, Jihong;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.127-154
    • /
    • 2020
  • Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of collapse resistance, vulnerability and redundancy. The review shows that deterministic measures predominate in quantifying structural robustness by comparing the structural responses of an intact and damaged structure. The attribute-based measures based on structural topology and stiffness are only applicable to elastic state of simple structural forms while the probabilistic measures receive growing interest by accounting for uncertainties in abnormal events, local failure, structural system and failure-induced consequences, which can be used for decision-making tools. There is still a lack of generalized quantifications of robustness, which should be derived based on the definition and design objectives and on the response of a structure to local damage as well as the associated consequences of collapse. Critical issues and recommendations for future design and research on quantification of robustness are provided from the views of column removal scenarios, types of structures, regularity of structural layouts, collapse modes, numerical methods, multiple hazards, degrees of robustness, partial damage of components, acceptable design criteria.

감도함수를 이용한 강인한 PID 제어기 설계 (Robust PID Controller Design using Sensitivity Function)

  • 오원근;임동균;조태경
    • 전기학회논문지P
    • /
    • 제54권3호
    • /
    • pp.129-133
    • /
    • 2005
  • In this paper we present a new PID controller design method using IMC design. The PID controller is derived based on the ${\infty}$-norm of sensitivity function to guarantee stability and performance robustness. This new PID controller is suitable for the plant with right half plane zeros or with time delay. The Simulation results show that the new method is superior to Ziegler-Nichols, Morari-Zafiriou, Mattezzoni-Rocco methods in respects in overshoot and settling time.

강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구 (A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance)

  • 박창우;이장욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF

LQ-servo를 이용한 강인한 PI제어기 설계 (Robust PI controller design using LQ-servo)

  • 이동영;윤성오;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.577-580
    • /
    • 1996
  • LQ-servo is a stability-robustness guaranteed multivariable controller design method based on the LQR structure to improve command following performance with output feedback. In this paper, a new type of PI controller based on LQ-servo is introduced. Then, Command following performance is improved using the limiting behavior of the control gain and weighting factors on the low frequency part of design parameter Q that is the state weighting matrix in the cost function.

  • PDF

강인한 특서을 갖는 지연시간 보상기의 설계 (Design of Dead Time Compensator with Robustness)

  • 박귀태;이기상;김성호
    • 대한전기학회논문지
    • /
    • 제41권2호
    • /
    • pp.199-208
    • /
    • 1992
  • MIESF(Modified Integral Error and State Feedback) controller suggested in order to control the processes with time delay is the control scheme that combines Smith predictor and IESF(Integral Error and State Feedback). This control scheme has better performance than the conventional PID controller incorporating Smith predictor with respect to the robustness and control performance for the modelling error. MIESF controller can be simply designed by pole assignment algorithm. BUT in such a case, it is difficult to find proper poles which gurantee robustness with respect to process parameter uncertainties. In order to solve the aforementioned difficulties, we suggest a new design method for MIESF controller and show the validity of the proposed design method.

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF

강건최적설계에서 목적함수의 강건성 지수에 대한 연구 (Investigation of the Robustness Index of the Objective Function in Robust Optimization)

  • 이세정;정성범;박경진
    • 대한기계학회논문집A
    • /
    • 제37권5호
    • /
    • pp.589-599
    • /
    • 2013
  • 강건최적설계의 개념은 다구찌 법에 근간을 두고 있다. 특히, 목적함수의 강건성 지수들은 설계변수나 파라미터의 변동에 둔감하고 보수적인 설계를 추구한다. 그 목적을 달성하기 위해 다양한 강건성 지수들이 소개되고 있다. 소개된 다양한 지수와 방법은 나름의 목적과 의미를 지니고 있다. 하지만, 다구찌 법에서 의미하는 강건설계의 의미를 목적함수의 강건성 지수로 반영하여 최적설계 문제로 확장하는 것에는 한계점이 발생할 수 있다. 본 논문의 목적은 기존 강건성 지수 연구들의 특징과 한계점을 파악하고 강건최적설계 연구의 고찰을 수행하는데 있다. 목적함수의 강건성 지수들의 특징을 확인하기 위해 결정론적 최적해와 강건해의 구분이 명확한 수학적 예제를 사용하여 평가를 수행하고 분석하였다. 더불어, 고찰을 토대로 강건최적설계에서의 강건성에 대한 새로운 관점과 상한함수를 사용한 목적함수의 강건성 지수를 제시하였다.

설계 민감도와 신뢰도 분석에 근거한 전자기기의 다목적 최적화 (Multi-Objective Optimization of Electromagnetic Device Based on Design Sensitivity Analysis and Reliability Analysis)

  • 렌지얀;장전해;박찬혁;고창섭
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, for constrained optimization problem, one multi-objective optimization algorithm that ensures both performance robustness and constraint feasibility is proposed when uncertainties are involved in design variables. In the proposed algorithm, the gradient index of objective function assisted by design sensitivity with the help of finite element method is applied to evaluate robustness; the reliability calculated by the sensitivity-assisted Monte Carlo simulation method is used to assess the feasibility of constraint function. As a demonstration, the performance and numerical efficiency of the proposed method is investigated through application to the optimal design of TEAM problem 22--a superconducting magnetic energy storage system.

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제3보) : 환경문제를 고려한 자동차 사이드 도어 어셈블리에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Third Report) : Application to Environment-Conscious Automotive Side-Door Assembly)

  • 남윤의
    • 산업경영시스템학회지
    • /
    • 제34권4호
    • /
    • pp.138-144
    • /
    • 2011
  • The design flexibility and robustness have become key factors to handle various sources of uncertainties at the early phase of design. Even though designers are uncertain about which single values to specify, they usually have a preference for certain values over others. In the first and second reports of a four-part paper, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple vehicle side-door impact beam design problem. This report presents the applicability of the proposed design approach to the large-scale multi-objective design optimization with a successful implementation of real vehicle side-door structure design.

Structural robustness of RC frame buildings under threat-independent damage scenarios

  • Ventura, Antonio;De Biagi, Valerio;Chiaia, Bernardino
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.689-698
    • /
    • 2018
  • This study focuses on a novel procedure for the robustness assessment of reinforced concrete (RC) framed structures under threat-independent damage scenarios. The procedure is derived from coupled dynamic and non-linear static analyses. Two robustness indicators are defined and the method is applied to two RC frame buildings. The first building was designed for gravity load and earthquake resistance in accordance with Eurocode 8. The second was designed according to the tie force (TF) method, one of the design quantitative procedures for enhancing resistance to progressive collapse. In addition, in order to demonstrate the suitability and applicability of the TF method, the structural robustness and resistance to progressive collapse of the two designs is compared.