• Title/Summary/Keyword: robust servo system

Search Result 220, Processing Time 0.025 seconds

H${\infty}$discrete-time servo control of optical pick-ups (광 픽업 장치의 H${\infty}$이산시간 서보제어)

  • 임승철;김윤영
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.521-528
    • /
    • 1996
  • Recently, higher speed optical disk drives including computer CD-ROM drives tend to be increasingly demanded to read or write the enormous volume of digital data. To this end, both structure and controller designs of the optical pick-ups should be improved concurrently. In this paper, the pick-up during auto-focusing motion is mathematically modelled retaining all its peculiar features. The model turns out a linear time invariant system suitable for a control design namedH${\infty}$ which ensures robust stability in the presence of system uncertainties. Numerical simulations are performed to demonstrate the robustness with appropriate performance specifications being satisfied. In addition, as the implementation issue of it, procedures of temporal discretization as well as model reduction of the controller are also addressed.

  • PDF

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

A New Improved Continuous Variable Structure Tracking Controller For BLDD Servo Motors (브러쉬없는 직접구동 전동기를 위한 새로운 개선된 연속 가변구조 추적제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.47-56
    • /
    • 2005
  • A new improved robust variable structure tracking controller is presented to provide an accurately prescribed tracking performance for brushless direct drive(BLDD) servo motors(SM) under uncertainties and load variations. A special integral sliding surface suggested for removing the reaching phase problems can define its ideal sliding mode and virtual ideal sliding trajectory from an initial position of SM. The tracking error caused by the nonzero value of the sliding surface is derived. A corresponding continuous control input with the disturbance observer is suggested to track a predetermined virtual ideal sliding trajectory within a prescribed value under all the uncertainties and load variations. The usefulness of the proposed algorithm is demonstrated through the comparative simulations for a BLDD SM under load variations.

  • PDF

Development of the Dynamometer Control System for Medium Speed Diesel Engines

  • Choi, Sang-Gu;Ryu, Sang-Hun;Kim, Jeom-Goo;Park, Ho-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.243-247
    • /
    • 2004
  • The dynamometers which had made in a long time ago could not control the input/output quantity of water minutely and was sensitive to a noise since it was controlled by an analog control method. Therefore, a fully digital controlled system was urgently required to be robust against various noises. In this paper, the new system which can control the amount of circulated water in dynamometer was developed. This system is consisted of an industrial digital type controller and a servo motor. The industrial PLC was used as a main controller for the developed system, and the actuator and servo motor were used to control the inlet and outlet valve independently. The torque signal of load cell was fed back to the main controller to regulate the diesel engines load. Generally, an input/output valve position of the old dynamometer was fixed with a proper situation for an engine output test and the torque was changed according to the time interval. However, the torque value for the dynamometer could not be constantly kept because of the variation of the input water flow and fluid characteristic. Therefore, the automatic control of an inlet and outlet valve should be performed to keep the constant torque. So, the PID control method was applied to solve this problem. Also, the development of a web-based remote control system was described in this paper. This software will give us the convenience of operation, the more efficient operations, and the reduced operator workload for operation of the dynamometer. The application results of the system have been verified at actual diesel engine field.

  • PDF

Robut DC Servo Motor Position Control System based on Acceleration Control (가속도제어에 근거한 강인한 직류서보전동기 위치제어계)

  • 박태건;이기상
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.101-110
    • /
    • 1995
  • In this paper, a DC servo motor position control system based on acceleration control is proposed. The proposed control system consists of an acceleration controller and an auto-tuqing fuzzy PID controller. The auto-tuning fuzzy PID controller provides corrections for an acceleration reference to remove the effect of parametric uncertainties. And it comprises of the expert system which performs the automatic tuning of the PID controller parameters and the conventional PID controller. Expermental results demonstrate strate thi~tth e proposed overall control system has robust properties and good control performances with regard to unmeasurable disturbances and parameter variations. Therefore, the proposed control scheme enhances the applicability of an acceleration control approach and especially performs accurate position control under such an operating environment that model uncertainties exist and/or load, etc. change significantly.

  • PDF

A study on the characteristics of eddy current braking torque with electromagnet exciting (전자석을 이용한 와전류 제동기의 제동 특성에 관한 연구)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Kim, Yong-Ha;Han, Kyoung-Hee;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.906-908
    • /
    • 2002
  • The technical improvement of servo system, it is required to study on robust control method in company. It needs to study on brake system that has constant torque-speed performance as load variation. In this paper, braking torque characteristics of eddy current braker between electromagnet stator and rotating disk are analyzed. The torque-speed characteristics and proper disk construction are presented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of stator. The relationship of these parameters are confirmed by experimental result.

  • PDF

$H_{\infty}$ Position Servo Control of Optical Pick-Ups (광 픽업 장치의 $H_{\infty}$ 위치 서보제어)

  • 임승철;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.119-124
    • /
    • 1996
  • Recently, high speed optical disk drives are increasingly demanded to read or write data fastly enough. To this end, both structure and controller designs of their optical pick-ups should be improved concurrently. In this paper, the pick-up during auto-focusing motion is mathematically modelled retaining all its peculiar features. The model turns out a linear time invariant system suitable for a control design method named H$_{\infty}$ which ensures robust stability in the presence of system uncertainties. Numerical simulation are performed to demonstrate the controller robustness with appropriate performance specifications being satisfied..

  • PDF

A Study On Predictive State Observer For Robust Control Of DC Servo Motor (직류 서어보 전동기의 강인성 제어를 위한 예상 상태 업저어버에 관한 연구)

  • Yoon, Byung-Do;Choi, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.426-429
    • /
    • 1988
  • A Microprocessor Based Digital Control System is inherently contained a control lag for processing the control program and a data detection time lag. This two types of time lag may cause the system to become unstable. In this paper proposed predictive state observer is used to solve the two time lag problems. I-P control algorithm is used to attain deadbeat response by adjusting the observer gain to overcome the parameter variation or with disturbance. The speed response shows good performance through computer simulation.

  • PDF

Adaptive cutting force controller for milling processes by using AC servodrive current measurements

  • Kim, Jongwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.840-843
    • /
    • 1996
  • This paper presents an adaptive cutting force controller for milling process, which can be attached to most commercial CNC machining centers in a practical way. The cutting forces of X,Y and Z axes measured indirectly from the use of currents drawn by AC feed-drive servo motors. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The robust controller structure is adopted in the whole adaptive control scheme. The conditions under which the whole scheme is globally convergent and stable are presented. The suggested control scheme has been implemented into a commercial machining center, and a series of cutting experiments on end milling and face milling processes are performed. The adaptive controller reveals reliable cutting force regulating capability under various cutting conditions.

  • PDF

An adaptive control algorithm for the speed control of hydraulic-servo system (유압 서보 시스템의 속도 제어를 위한 적응제어기의 설계에 관한 연구)

  • Yun, Ji-Seop;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1986
  • An adaptive controller which is robust to the unknown load disturbance is developed for electro-hydraulic speed control systems. Since the load disturbance degrades the performance of the controller such as a steady state error and rise time in the conventional control system, appropriate adjustment of the controller is necessary in order to obtain the desired performances. The adaptation mechanism was designed to tune the feedforward gain, based upon minimization of ITAE (integral of time-multiplied absolute error) performance. The unknown load distrubance was identified by using an analog computer from the relationship between the velocity of the hydraulic motor and the load pressure. To evaluate the performance of the controller a series of simulations and experiments were conducted for various load conditions. Both results show that the proposed adaptive controller shows abetter performance than the conventional controller in terms of the steady state error and rise time.

  • PDF