• Title/Summary/Keyword: robust regression estimation

Search Result 99, Processing Time 0.02 seconds

A Study on the Several Robust Regression Estimators

  • Kim, Jee-Yun;Roh, Kyung-Mi;Hwang, Jin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.307-316
    • /
    • 2004
  • Principal Component Regression(PCR) and Partial Least Squares Regression(PLSR) are the two most popular regression techniques in chemometrics. In the field of chemometrics usually the number of regressor variables greatly exceeds the number of observation. So we have to reduce the number of regressors to avoid the identifiability problem. In this paper we compare PCR and PLSR techniques combined with various robust regression methods including regression depth estimation. We compare the efficiency, goodness-of-fit and robustness of each estimators under several contamination schemes.

  • PDF

Some efficient ratio-type exponential estimators using the Robust regression's Huber M-estimation function

  • Vinay Kumar Yadav;Shakti Prasad
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.291-308
    • /
    • 2024
  • The current article discusses ratio type exponential estimators for estimating the mean of a finite population in sample surveys. The estimators uses robust regression's Huber M-estimation function, and their bias as well as mean squared error expressions are derived. It was campared with Kadilar, Candan, and Cingi (Hacet J Math Stat, 36, 181-188, 2007) estimators. The circumstances under which the suggested estimators perform better than competing estimators are discussed. Five different population datasets with a well recognized outlier have been widely used in numerical and simulation-based research. These thorough studies seek to provide strong proof to back up our claims by carefully assessing and validating the theoretical results reported in our study. The estimators that have been proposed are intended to significantly improve both the efficiency and accuracy of estimating the mean of a finite population. As a result, the results that are obtained from statistical analyses will be more reliable and precise.

Trajectory Estimation of Center of Plantar Foot Pressure Using Gaussian Process Regression (가우시안 프로세스 회귀를 이용한 족저압 중심 궤적 추정)

  • Choi, Yuna;Lee, Daehun;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2022
  • This paper proposes a center of plantar foot pressure (CoP) trajectory estimation method based on Gaussian process regression, with the aim to show robust results regardless of the regions and numbers of FSRs of the insole sensor. This method can bring an interpolation between the measurement points inside the wearable insole sensor, and two experiments are conducted for performance evaluation. For this purpose, the input data used in the experiment are generated in three types (13 FSRs, 8 FSRs, 5 FSRs) according to the regions and numbers of FSRs. First, the estimation results of the CoP trajectory are compared using Gaussian process regression and weighted mean. As a result of each method, the estimation results of the two methods were similar in the case of 13 FSRs data. On the other hand, in the case of the 8 and 5 FSRs data, the weighted mean varies depending on the regions and numbers of FSRs, but the estimation results of Gaussian process regression showed similar results in spite of reducing the regions and numbers. Second, the estimation results of the CoP trajectory based on Gaussian process regression during several gait cycles are analyzed. In five gait cycles, the previous cycle and the current estimation results are compared, and it was confirmed that similar trajectories appeared in all. In this way, the method of estimating the CoP trajectory based on Gaussian process regression showed robust results, and stability was confirmed by yielding similar results in several gait cycles.

Principal Components Logistic Regression based on Robust Estimation (로버스트추정에 바탕을 둔 주성분로지스틱회귀)

  • Kim, Bu-Yong;Kahng, Myung-Wook;Jang, Hea-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.531-539
    • /
    • 2009
  • Logistic regression is widely used as a datamining technique for the customer relationship management. The maximum likelihood estimator has highly inflated variance when multicollinearity exists among the regressors, and it is not robust against outliers. Thus we propose the robust principal components logistic regression to deal with both multicollinearity and outlier problem. A procedure is suggested for the selection of principal components, which is based on the condition index. When a condition index is larger than the cutoff value obtained from the model constructed on the basis of the conjoint analysis, the corresponding principal component is removed from the logistic model. In addition, we employ an algorithm for the robust estimation, which strives to dampen the effect of outliers by applying the appropriate weights and factors to the leverage points and vertical outliers identified by the V-mask type criterion. The Monte Carlo simulation results indicate that the proposed procedure yields higher rate of correct classification than the existing method.

Robust Estimation and Outlier Detection

  • Myung Geun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • The conditional expectation of a random variable in a multivariate normal random vector is a multiple linear regression on its predecessors. Using this fact, the least median of squares estimation method developed in a multiple linear regression is adapted to a multivariate data to identify influential observations. The resulting method clearly detect outliers and it avoids the masking effect.

  • PDF

A Robust Estimation Procedure for the Linear Regression Model

  • Kim, Bu-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.2
    • /
    • pp.80-91
    • /
    • 1987
  • Minimum $L_i$ norm estimation is a robust procedure ins the sense that it leads to an estimator which has greater statistical eficiency than the least squares estimator in the presence of outliers. And the $L_1$ norm estimator has some desirable statistical properties. In this paper a new computational procedure for $L_1$ norm estimation is proposed which combines the idea of reweighted least squares method and the linear programming approach. A modification of the projective transformation method is employed to solve the linear programming problem instead of the simplex method. It is proved that the proposed algorithm terminates in a finite number of iterations.

  • PDF

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

지자기 전달함수의 로버스트 추정

  • Yang, Jun-Mo;O, Seok-Hun;Lee, Deok-Gi;Yun, Yong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.131-142
    • /
    • 2002
  • Geomagnetic transfer function is generally estimated by choosing transfer to minimize the square sum of differences between observed values. If the error structure sccords to the Gaussian distribution, standard least square(LS) can be the estimation. However, for non-Gaussian error distribution, the LS estimation can be severely biased and distorted. In this paper, the Gaussian error assumption was tested by Q-Q(Quantile-Quantile) plot which provided information of real error structure. Therefore, robust estimation such as regression M-estimate that does not allow a few bad points to dominate the estimate was applied for error structure with non-Gaussian distribution. The results indicate that the performance of robust estimation is similar to the one of LS estimation for Gaussian error distribution, whereas the robust estimation yields more reliable and smooth transfer function estimates than standard LS for non-Gaussian error distribution.

  • PDF

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors (스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.