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Abstract
The current article discusses ratio type exponential estimators for estimating the mean of a finite population

in sample surveys. The estimators uses robust regression’s Huber M-estimation function, and their bias as well
as mean squared error expressions are derived. It was campared with Kadilar, Candan, and Cingi (Hacet J Math
Stat, 36, 181–188, 2007) estimators. The circumstances under which the suggested estimators perform better
than competing estimators are discussed. Five different population datasets with a well recognized outlier have
been widely used in numerical and simulation-based research. These thorough studies seek to provide strong
proof to back up our claims by carefully assessing and validating the theoretical results reported in our study.
The estimators that have been proposed are intended to significantly improve both the efficiency and accuracy of
estimating the mean of a finite population. As a result, the results that are obtained from statistical analyses will
be more reliable and precise.

Keywords: ratio type exponential estimator, mean squared error (MSE), Huber M function, Robust
regression, auxiliary variable, percent relative efficiency

1. Introduction

In statistics, estimation is the method of estimating an unknown population parameter utilising sample
data. Determining the population mean using a sample of data is a frequent example of this. A single
value called a point estimator, which is used for estimating the population parameter, is one method
of estimation. Unreliable or biassed estimates may result from point estimators’ sensitivity to outliers
or other odd observations in the data.

A ratio estimator, that employs the ratio of two variables that are present in the sample data to
determine the ratio of the associated population parameters, is one approach to overcoming this issue.
Whenever the correlation coefficient between the variable being studied and an auxiliary variable is
positive, it indicates that the two variables typically vary together, and this relationship may be used
to increase estimate accuracy. By modifying the estimate of the study variable with the auxiliary
variable, a more precise and effective estimate of the population mean may be achieved.

In order to improve the performance of the ratio estimator even further, information about the
auxiliary variable may be integrated into the estimating process. For simplicity, the estimator may
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be modified based on the information about the auxiliary variable’s unpredictability in relation to
the mean considering the coefficient of variation, and the estimator could be modified based on the
auxiliary variable’s distributional shape considering the coefficient of kurtosis. Now, the ratio esti-
mator may be tailored to the unique properties of the data by taking into consideration these other
variables, which can result in even more precise and effective estimations of the unknown population
parameter. Overall, ratio estimators are considered an excellent method for determining population
characteristics from sample observations, and they may be particularly useful when there is a strong
positive correlation between the study and auxiliary variables. Notably, it’s important to exercise pre-
cautions when utilising any estimating technique and to take into account any potential restrictions
and underlying presumptions that might be present.

The potential benefits of incorporating data on the auxiliary variable to improve the performance
of ratio estimators have been discovered by several statisticians.

A number of studies made use of this approach, for example Kadilar and Cingi (2004), Kadilar et
al. (2007), Noor-ul-Amin et al. (2016, 2018, and 2022), Prasad (2020), Zaman (2020, 2021), and Za-
man and Kadilar (2021a, 2021b). By using additional information from the auxiliary variables, these
investigations are able to increase the ratio estimators’ precision and accuracy, which has significant
consequences for the validity and precision of statistical research. A cutting-edge and well-liked tech-
nique for handling outliers in datasets is the use of robust regression algorithms. These techniques
were created to reduce the impact of outliers on regression analysis while still taking into account
a significant portion of the data points. There are several strategies to deal with outliers, including
changing the data, using Winsorization, and locating and erasing outliers. The unique features of the
data and the objectives of the study influence the methodology used.

The L1 criteria for this purpose was initially proposed by Edgworth (1887), according to sources.
The most widely employed M-estimator is afterwards suggested by Huber (1973). When compared
to the LS estimator, the Huber M-estimator has the additional advantage of not being as sensitive to
outliers. When it comes to handling data outliers, Huber M-estimation is a more reliable approach
than LS estimation. As a result, it is frequently used in circumstances wherein outliers might be
present. The Huber M-estimator makes use of the function ρ(ε), which strikes a balance between ε2

and |ε |. Here, ε refers to the error term from the linear regression model y = a + bx + ε, and an is the
model constant. The following are the parameters that the Huber ρ(ε) function accepts:

ρ(ε) =

 ε2; −l ≤ ε ≤ l,

l|ε| − l2; ε < −l or ε < l.
(1.1)

The tuning constant l is a parameter that affects the level of robustness of the estimator used in statis-
tical analysis. By adjusting the value of l, one can control the sensitivity of the estimator to outliers
and other unusual observations in the data. A larger value of l makes the estimator more robust, while
a smaller value of l makes the estimator more sensitive to outliers. The appropriate value of l depends
on the specific characteristics of the data and the goals of the analysis, and may need to be determined
through experimentation or other means.

The formula l = 1.5σ̂, was developed by Huber (1981), where σ̂ is an estimate of the SD σ of
the population’s random errors. For additional details on constant l and M-estimators, see Rousseeuw
and Leroy (1987). The regression coefficient, which is calculated by minimising, is β̂hm.

n∑
i

ρ (yi − a − bxi) (1.2)
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with respect to a and b.
Huber (1981) developed the M-estimators method inside the robust regression framework to deal

with outliers. By developing ratio estimators that incorporate Huber’s M-estimator, which has been
shown to be more successful in delivering accurate and reliable results in the presence of outliers,
Kadilar et al. (2007) furthered this method. Essentially, these methods enable the removal of outlier
effects, improving the accuracy and robustness of regression models. In order to lessen the negative
impacts of the outlier data, we explore employing the Huber M-estimation function in this paper’s
ratio type exponential estimators.

To study more about robust regression see quantreg (Koenker, 2009) package in R-Software
(2021), Zaman and Bulut (2019, 2021), Zaman et al. (2021, 2022), and Bulut and Zaman (2022).

In Section 2, we consider the existing estimators using robust regression. In Section 3, we discuss
new ratio type exponential estimators based on the Huber M-estimation function, as well as their
MSEs. Section 4 provides efficiency comparisons of the existing and considered estimators based
on the expression of MSEs. Sections 5 and 6 present the results of the numerical illustration and
simulation study, respectively. In the final section, we draw a conclusion based on these results.

2. Existing ratio estimators

Kadilar et al. (2007) explored ratio estimators ȳcki, (i = 1, 2, 3, 4, 5) for estimating finite population
mean Ȳ using robust regression is given as

ȳck1 =
ȳ + β̂hm(X̄ − x̄)

x̄
X̄. (2.1)

ȳck2 =
ȳ + β̂hm(X̄ − x̄)

x̄ + Cx

(
X̄ + Cx

)
. (2.2)

ȳck3 =
ȳ + β̂hm(X̄ − x̄)

x̄ + β2(x)

[
X̄ + β2(x)

]
. (2.3)

ȳck4 =
ȳ + β̂hm(X̄ − x̄)

x̄β2(x) + Cx

[
X̄β2(x) + Cx

]
. (2.4)

ȳck5 =
ȳ + β̂hm(X̄ − x̄)

x̄Cx + β2(x)

[
X̄Cx + β2(x)

]
, (2.5)

where Cx and β2(x) are the auxiliary variable’s population coefficients of variation and kurtosis, re-
spectively; ȳ and x̄ are the study and auxiliary variable’s sample means, respectively, and it is assumed
that the population mean X̄ is known. In robust regression, Huber M-estimation function are utilised
to calculate β̂hm.

Using a first-degree-approximation expansion, the MSEs of the estimators (1)–(5) can be calcu-
lated as follows:

MSE (ȳcki) =
1 − f

n

(
R2

ckiS
2
x + 2βhmRckiS 2

x + β2
hmS 2

x − 2RckiS xy − 2βhmS xy + S 2
y

)
, (2.6)

where i = 1, 2, 3, 4, 5.; f = n/N; n is size of sample; N is the size of population;
Rck1 = Ȳ/X̄, Rck2 = Ȳ/(X̄ + Cx), Rck3 = Ȳ/(X̄ + β2(x)), Rck4 = Ȳβ2(x)/(X̄β2(x) + Cx), Rck5 =

ȲCx/(X̄Cx + β2(x)) are the population ratios; the variances of the study and auxiliary variables are S 2
y

and S 2
x, respectively, while the covariance between the study and auxiliary variable is S xy.
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3. Mathematical formulation of suggested ratio type exponential estimators

In recent years, the use of robust statistical approaches in sampling studies and finite population mean
estimates has received a lot of attention. The necessity to improve the effectiveness and accuracy of
predicting the population mean in the context of outliers served as the primary motivation for estab-
lishing the development and study of the ratio type exponential estimators discussed in this article.
Sample surveys are an important method for deriving conclusions regarding finite populations. How-
ever, when outliers are present in the data, which might have a disproportionate impact on traditional
estimators, their dependability may be compromised. Robust estimating strategies are now being in-
vestigated as a result of this constraint.
The suggested estimators are based on the Huber M-estimation function of the robust regression.
The objective was to develop estimators that are capable of handling the disruptive impacts of out-
liers while providing more accurate estimations of the population mean is what contributed to this
conclusion. We intend to reduce the possible biases and inefficiencies associated with conventional
estimators in the context of unusual data points by utilising the adaptive characteristics of Huber M-
estimation.
In this paper, we formulate mathematical equations for the bias and the mean squared error of the
suggested estimators, which enable a thorough evaluation of their performance. We contrast these
estimators’ performance with that of those developed by Kadilar, Candan, and Cingi (Hacet J Math
Stat, 36, 181–188, 2007) in order to assess their efficacy. To determine the scenarios in which the
recommended estimators perform better than current techniques, a comparison study is necessary.
Furthermore, real-world application is essential, thus we undertake numerical and simulation-based
investigations employing five population datasets, each of which contains an outlier. These empiri-
cal studies support our theoretical conclusions and offer perceptions on how the suggested estimators
actually work in real-world situations.

We presented ratio type exponential estimators employing the Huber (1981) M function, inspired
by the work of Kadilar et al. (2007) and Prasad (2020). The suggested estimators can produce effective
results even when there are outliers. The following estimators are recommended for estimating the
population mean:

ȳsv1 =
[
ȳ + β̂hm

(
X̄ − x̄

)]
exp


(
X̄ − x̄

)(
X̄ + x̄

) . (3.1)

ȳsv2 =
[
ȳ + β̂hm

(
X̄ − x̄

)]
exp


(
X̄ − x̄

)(
X̄ + x̄

)
+ 2Cx

. (3.2)

ȳsv3 =
[
ȳ + β̂hm

(
X̄ − x̄

)]
exp


(
X̄ − x̄

)(
X̄ + x̄

)
+ β2(x)

. (3.3)

ȳsv4 =
[
ȳ + β̂hm

(
X̄ − x̄

)]
exp

 β2(x)
(
X̄ − x̄

)
β2(x)

(
X̄ + x̄

)
+ 2Cx

. (3.4)
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ȳsv5 =
[
ȳ + β̂hm

(
X̄ − x̄

)]
exp

 Cx

(
X̄ − x̄

)
Cx

(
X̄ + x̄

)
+ 2β2(x)

. (3.5)

To calculate the mean square error (MSE) of the suggested estimators ȳsv1, ȳsv2, ȳsv3, ȳsv4 and ȳsv5, up
to the first order of large approximations using the following transformations:

ȳ = Ȳ(1 + ε0), and x̄ = X̄(1 + ε1) such that E(ε j) = 0, |ε j| < 1∀ j = 0, 1, 2, 3., E(ε2
0 ) = ((1/n) −

(1/N))C2
y , E(ε2

1 ) = ((1/n) − (1/N))C2
x , E(ε0ε1) = ((1/n) − (1/N))ρyxCyCx.

We would like to point out that the population data are used to calculate β̂hm. Using the above
transformations, express the equations “(3.1), (3.2), (3.3), (3.4) and (3.5) ” in terms of ε′s, we get

ȳsv1 =
{
Ȳ (1 + ε0) − X̄βhmε1 (1 + ε2) (1 + ε3)−1

}
exp

−1
2
ε1

(
1 +

1
2
ε1

)−1 . (3.6)

ȳsv2 =
{
Ȳ (1 + ε0) − X̄βhmε1 (1 + ε2) (1 + ε3)−1

}
exp

−1
2

Φsv2ε1

(
1 +

1
2

Φsv2ε1

)−1 . (3.7)

ȳsv3 =
{
Ȳ (1 + ε0) − X̄βhmε1 (1 + ε2) (1 + ε3)−1

}
exp

−1
2

Φsv3ε1

(
1 +

1
2

Φsv3ε1

)−1 . (3.8)

ȳsv4 =
{
Ȳ (1 + ε0) − X̄βhmε1 (1 + ε2) (1 + ε3)−1

}
exp

−1
2

Φsv4ε1

(
1 +

1
2

Φsv4ε1

)−1 . (3.9)

ȳsv5 =
{
Ȳ (1 + ε0) − X̄βhmε1 (1 + ε2) (1 + ε3)−1

}
exp

−1
2

Φsv5ε1

(
1 +

1
2

Φsv5ε1

)−1 , (3.10)

where Φsv2 = X̄/(X̄ + Cx), Φsv3 = X̄/(X̄ + β2(x)), Φsv4 = X̄β2(x)/(X̄β2(x) + Cx), Φsv5 =

X̄Cx/(X̄Cx + β2(x)).
Extending the right side of “(3.6), (3.7), (3.8), (3.9) and (3.10)”, multiplying and ignoring the

terms of ε′s with power higher than 2, we have

ȳsv1 − Ȳ � Ȳ
[
ε0 −

1
2
ε1 +

3
8
ε2

1 −
1
2
ε0ε1 −

X̄βhm

Ȳ

(
ε1 −

1
2
ε2

1 + ε1ε2 − ε1ε3

)]
. (3.11)

ȳsv2 − Ȳ � Ȳ
[
ε0 −

1
2

Φsv2ε1 +
3
8

Φ2
sv2ε

2
1 −

1
2

Φsv2ε0ε1 −
X̄βhm

Ȳ

(
ε1 −

1
2

Φsv2ε
2
1 + ε1ε2 − ε1ε3

)]
. (3.12)

ȳsv3 − Ȳ � Ȳ
[
ε0 −

1
2

Φsv3ε1 +
3
8

Φ2
sv3ε

2
1 −

1
2

Φsv3ε0ε1 −
X̄βhm

Ȳ

(
e1 −

1
2

Φsv3ε
2
1 + ε1ε2 − ε1ε3

)]
. (3.13)

ȳsv4 − Ȳ � Ȳ
[
ε0 −

1
2

Φsv4ε1 +
3
8

Φ2
sv4ε

2
1 −

1
2

Φsv4ε0ε1 −
X̄βhm

Ȳ

(
ε1 −

1
2

Φsv4ε
2
1 + ε1ε2 − ε1ε3

)]
. (3.14)
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Table 1: Parameters of five natural population data sets

A B C D E
UScereals Singh (pp: 1111) Murthy (pp: 399) Murthy (pp: 288) Engel

(Ripley et al., 2013) (2003) (1967) (1967) (Koenker and Bassett, 1982)
N = 65 N = 50 N = 34 N = 80 N = 235
n = 20 n = 20 n = 20 n = 20 n = 20

Ȳ = 149.4083 Ȳ = 555.4345 Ȳ = 199.4412 Ȳ = 5182.637 Ȳ = 624.1501
X̄ = 237.8384 X̄ = 878.1624 X̄ = 208.8824 X̄ = 1126.463 X̄ = 982.473
ρ = 0.5286552 ρ = 0.8038341 ρ = 0.9800867 ρ = 0.9413055 ρ = 0.9112434

Cy = 0.4177271 Cy = 1.052916 Cy = 0.7531797 Cy = 0.3541939 Cy = 0.4429335
Cx = 0.549239 Cx = 1.235168 Cx = 0.7205298 Cx = 0.7506772 Cx = 0.5284938
βhm = 0.1928509 βhm = 0.4123359 βhm = 0.9537324 βhm = 1.989718 βhm = 0.5368326
β2(x) = 8.191083 β2(x) = 4.617048 β2(x) = 2.912272 β2(x) = 2.866433 β2(x) = 17.63426

S x = 130.6296 S x = 1084.678 S x = 150.506 S x = 845.6097 S x = 519.2309
S y = 62.41187 S y = 584.826 S y = 150.215 S y = 1835.659 S y = 276.457
S xy = 4310.041 S xy = 509910.4 S xy = 22158.05 S xy = 1461142 S xy = 130804.4

ȳsv5 − Ȳ � Ȳ
[
ε0 −

1
2

Φsv5ε1 +
3
8

Φ2
sv5ε

2
1 −

1
2

Φsv5ε0ε1 −
X̄βhm

Ȳ

(
ε1 −

1
2

Φsv5ε
2
1 + ε1ε2 − ε1ε3

)]
. (3.15)

Squaring “(3.11), (3.12), (3.13), (3.14) and (3.15)” both sides, and discarding the terms of ε′s
having power of bigger than 2, we get

[
ȳsv1 − Ȳ

]2
= Ȳ2

ε2
0 + ε2

1

(
1
2

+
X̄βhm

Ȳ

)2

− 2ε0ε1

(
1
2

+
X̄βhm

Ȳ

) . (3.16)

[
ȳsv2 − Ȳ

]2
= Ȳ2

ε2
0 + ε2

1

(
1
2

Φsv2 +
X̄βhm

Ȳ

)2

− 2ε0ε1

(
1
2

Φsv2 +
X̄βhm

Ȳ

) . (3.17)

[
ȳsv3 − Ȳ

]2
= Ȳ2

ε2
0 + ε2

1

(
1
2

Φsv3 +
X̄βhm

Ȳ

)2

− 2ε0ε1

(
1
2

Φsv3 +
X̄βhm

Ȳ

) . (3.18)

[
ȳsv4 − Ȳ

]2
= Ȳ2

ε2
0 + ε2

1

(
1
2

Φsv4 +
X̄βhm

Ȳ

)2

− 2ε0ε1

(
1
2

Φsv4 +
X̄βhm

Ȳ

) . (3.19)

[
ȳsv5 − Ȳ

]2
= Ȳ2

ε2
0 + ε2

1

(
1
2

Φsv5 +
X̄βhm

Ȳ

)2

− 2ε0ε1

(
1
2

Φsv5 +
X̄βhm

Ȳ

) . (3.20)

Taking the expectation of both sides of the equations “(3.16)–(3.20)”, we obtain the MSEs of the
considered estimators ȳsv1, ȳsv2, ȳsv3, ȳsv4 and ȳsv5, up to the first order of large approximations as

MSE (ȳsv1) =
1 − f

n

[
S 2

y +
1
4

R2
sv1S 2

x + β2
hmS 2

x − Rsv1S yx + Rsv1βhmS 2
x − 2βhmS yx

]
. (3.21)
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MSE (ȳsv2) =
1 − f

n

[
S 2

y +
1
4

R2
sv2S 2

x + β2
hmS 2

x − Rsv2S yx + Rsv2βhmS 2
x − 2βhmS yx

]
. (3.22)

MSE (ȳsv3) =
1 − f

n

[
S 2

y +
1
4

R2
sv3S 2

x + β2
hmS 2

x − Rsv3S yx + Rsv3βhmS 2
x − 2βhmS yx

]
. (3.23)

MSE (ȳsv4) =
1 − f

n

[
S 2

y +
1
4

R2
sv4S 2

x + β2
hmS 2

x − Rsv4S yx + Rsv4βhmS 2
x − 2βhmS yx

]
. (3.24)

MSE (ȳsv5) =
1 − f

n

[
S 2

y +
1
4

R2
sv5S 2

x + β2
hmS 2

x − Rsv5S yx + Rsv5βhmS 2
x − 2βhmS yx

]
. (3.25)

Rsv1 = Ȳ/X̄, Rsv2 = Ȳ/(X̄ + Cx), Rsv3 = Ȳ/(X̄ + β2(x)), Rsv4 = Ȳβ2(x)/(X̄β2(x) + Cx), Rsv5 =

ȲCx/(X̄Cx + β2(x)).

4. Theoretical efficiency comparison

In this section, the efficiency criteria for proposed estimators ȳsvi ( i = 1, 2, . . . , 5 ) have been deter-
mined algebraically according to the Kadilar et al. (2007) estimators.

MSE(ȳcki) −MSE(ȳsvi) = ((1 − f )/n)[(3/4)R2
sviS

2
x + βhmRsviS 2

x − RsviS xy] > 0, if

Rsvi > 0, (i = 1, 2, . . . , 5). (4.1)

According to the equations (4.1), the proposed estimators ȳsvi (where i = 1, 2, 3, 4, 5 ) are more domi-
nant than that of the Kadilar et al. (2007) estimators as long as the conditions (4.1) fulfilled.

5. Numerical illustration

The considered estimators are compared to the existing estimators in the literature in this section. To
compare the behaviour of the suggested estimators to other existing estimators, five different types
of natural population data sets (shown in Table 1) were used. Since real population data sets include
outliers, we take them all into account.

We visually detected outliers in the datasets A, B, C, D, E and displayed them in Figure 1. These
data points are considered outliers because they considerably diverge from the overall trend of the
dataset, which suggests that they may have an impact on parameter estimation. We used the Huber M
robust regression method, which has become known for its proficiency in handling various kinds of
outliers, to mitigate this effect. Since they are created to give more robust and trustworthy parameter
estimates in the case of outliers, we anticipate that our proposed estimators will outperform those
found in the literature.

Data set - A : is considered from “UScereals” (Ripley et al., 2013) from the “MASS” package in
R-Software (2021) where,

Y = the weight of the calories in grams.
X = the weight in grams of the sodium.
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Figure 1: Scatter plots across various datasets.

Outlier description: We uses scatter plots to visually recognise outliers in this dataset, concentrat-
ing on cases where the weight of sodium and the weight of calories differed significantly from the
majority of data points. Outliers in this dataset are mostly high-sodium and high-calorie cereals.

Data set - B : is considered from the “Singh” (2003) (Page no: 1111), where,

Y = Considered as the amount of the real estate farm loans taken out in 1977.
X = Considered as the amount of non-real estate farm loans taken out in 1977.

Outlier description: Using scatter plots, outliers in this dataset were identified, revealing multiple
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points of data with substantially higher values for non-real estate farm loans as well as real estate
farm loans in 1977.

Data set - C : is taken from “Murthy” (1967) (Page no: 399) where,

Y = The region’s cultivated area was under wheat in 1964.
X = The region’s cultivated area was under wheat in 1963.

Outlier description: This dataset’s outliers were identified using scatter plots, which showed situa-
tions when the cultivated area under wheat in 1964 diverged significantly from the normal range.

Data set - D : is taken from the from “Murthy” (1967) (Page no: 288), where,

Y = Output data for 80 factories in a region.
X = Fixed capital for 80 factories in a region.

Outlier description: In this dataset, we utilised scatter plots to visually evaluate data points where
fixed capital and output data for factories in an area had unusual patterns, and then we used those
data points to identify outliers.

Data set - E : is picked from the “Engel data set” (Koenker and Bassett, 1982) from the “quantreg”
package in R-Software (2021) where,

Y = Annual food expenditure of a household in Belgian francs.
X = Annual household income in Belgian francs.

Outlier description: In order to visually identify outliers, scatter plots were used, concentrating on
families with unusually high yearly incomes or annual food expenditures in Belgian francs.

We went into discussion about how these visually distinguished outliers affected our study and
the estimating techniques we used. We also want to highlight that we used the Huber M robust
regression method in addition to visual outlier identification. The adaptability of Huber M regression
to different kinds of outliers and extreme values is well recognised. In comparison to conventional
least squares regression, this technique reduces the effect of outliers on parameter estimation and
produces results that are more accurate. It has been designed especially for datasets having differed
forms of outliers, including high leverage, influential, and extreme values, and it is developed to
manage outliers well. Our dedication to tackling outlier difficulties and producing robust estimates in
the presence of multiple outlier types is demonstrated by the adoption of Huber M robust regression
in our research. This improves the transparency of our research and gives a clearer picture of any
possible difficulties brought on by outliers in the data sets under study. The RE(%) of the suggested
estimators ȳsvi, (i = 1, 2, . . . , 5 ) with respect to the Kadilar et al. (2007) estimators are given as:

RE(Existing Estimators, Proposed Estimators) =
MSE(Existing Estimators)
MSE(Proposed Estimators)

× 100.

In Tables 2–5, where we show the relative efficiency (RE(%)) results, the performance of the esti-
mators is compared and evaluated. These tables provide insightful information about the performance
of our suggested estimators in comparison to the existing estimators. The RE(%) values above 100 in
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Table 2: Percent relative efficiencies of the suggested estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators

Data sets Estimators ȳck1 ȳck2 ȳck3 ȳck4 ȳck5

A

ȳsv1 212.7720 212.0549 202.5874 212.6842 194.9832
ȳsv2 213.1139 212.3956 202.9129 213.0259 195.2965
ȳsv3 217.7221 216.9884 207.3006 217.6323 199.5195
ȳsv4 212.8138 212.0966 202.6272 212.7260 195.0216
ȳsv5 221.5548 220.8081 210.9498 221.4634 203.0318

B

ȳsv1 250.9038 250.3324 248.7804 250.7798 249.1821
ȳsv2 251.2503 250.6781 249.1240 251.1261 249.5262
ȳsv3 252.1963 251.6219 250.0620 252.0717 250.4657
ȳsv4 250.9788 250.4073 248.8549 250.8549 249.2567
ȳsv5 251.9507 251.3770 249.8185 251.8263 250.2219

C

ȳsv1 370.1677 367.6736 360.2442 369.3084 356.5053
ȳsv2 372.4287 369.9194 362.4446 371.5642 358.6828
ȳsv3 379.3293 376.7735 369.1601 378.4487 365.3287
ȳsv4 370.9437 368.4444 360.9993 370.0825 357.2526
ȳsv5 382.8989 380.3190 372.6340 382.0100 368.7665

D

ȳsv1 379.8456 379.3468 377.9464 379.6715 377.3188
ȳsv2 380.3142 379.8148 378.4127 380.1399 377.7843
ȳsv3 381.6361 381.1350 379.7280 381.4612 379.0975
ȳsv4 380.0090 379.5100 378.1091 379.8348 377.4812
ȳsv 382.2315 381.7296 380.3204 382.0563 379.6889

E

ȳsv1 281.8757 281.6214 273.6011 281.8612 266.5705
ȳsv2 282.0685 281.8140 273.7882 282.0541 266.7529
ȳsv3 288.2916 288.0315 279.8286 288.2768 272.6380
ȳsv4 281.8866 281.6323 273.6117 281.8722 266.5809
ȳsv5 293.9832 293.7180 285.3532 293.9681 278.0206

these tables, in specific, indicate an important benefit for the suggested estimators.
This result highlights a key finding: Our suggested estimators frequently beat their competitors in
terms of mean squared error. This result occurs when the percent relative efficiencies surpass 100.
This is an excellent illustration of how well our estimators perform when applied to the simulated
datasets in terms of prediction accuracy and precision. These findings highlight the usefulness in real-
world applications and enhanced efficiency of our suggested estimators, highlighting their potential
as useful tools for statistical estimation tasks.

6. Simulation studies

To find the RE(%)of the suggested estimators, we will conduct a simulation study that is carried out
by considering the “Engel Data Set” (Koenker and Bassett, 1982) presented in Table 1. This data set
contains data on income and food expenditure for 235 working-class Belgian households. To load this
data, load the quantreg library, and then enter the command data (engel) in R programming.

We carry out the procedures listed below for carrying out the simulation study, which were coded
in R-program (2021), and we describe the simulation processes taken into account to determine the
MSEs of the suggested estimators ȳsvi ( i = 1, 2, . . . , 5 ) and traditional estimator ȳcki, ( i = 1, 2, . . . , 5
)

Step 1 : Select the 5,000, 10,000 and 1,00,000 samples of the different size n (where n = 20, n =

30, n = 40 and n = 50) using the “Engel Data Set” (Koenker and Bassett, 1982) that are mentioned
in R program using the SRS without repalcement techniques.

Step 2 : After that we will considered the data from 5,000, 10,000 and 1,00,000 samples to find the
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Table 3: Relative efficiencies (%) of the considered estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators
for simulation studies for 5,000 iterations

Sample Sizes Estimators ȳck1 ȳck2 ȳck3 ȳck4 ȳck5

n = 20

ȳsv1 287.4186 287.1696 284.8613 287.3576 282.4920
ȳsv2 287.6115 287.3623 285.0525 287.5505 282.6816
ȳsv3 289.4916 289.2408 286.9159 289.4302 284.5295
ȳsv4 287.4619 287.2128 284.9042 287.4009 282.5346
ȳsv5 291.1673 290.9150 288.5766 291.1055 286.1765

n = 30

ȳsv1 281.6029 281.3562 278.3832 281.5545 275.7349
ȳsv2 281.7920 281.5452 278.5702 281.7435 275.9200
ȳsv3 284.2157 283.9668 280.9662 284.1669 278.2933
ȳsv4 281.6370 281.3903 278.4170 281.5886 275.7683
ȳsv5 286.1736 285.9230 282.9017 286.1244 280.2103

n = 40

ȳsv1 280.9477 280.7004 277.2045 280.9056 274.2236
ȳsv2 281.1367 280.8892 277.3909 281.0946 274.4081
ȳsv3 283.9790 283.7289 280.1953 283.9364 277.1823
ȳsv4 280.9777 280.7303 277.2340 280.9356 274.2529
ȳsv5 286.2625 286.0104 282.4484 286.2196 279.4112

n = 50

ȳsv1 284.7560 284.5029 280.5511 284.7162 277.1985
ȳsv2 284.9496 284.6964 280.7418 284.9098 277.3870
ȳsv3 288.1667 287.9106 283.9114 288.1265 280.5187
ȳsv4 284.7844 284.5314 280.5791 284.7447 277.2262
ȳsv5 290.7960 290.5376 286.5019 290.7554 283.0782

value of the ˆ̄Y . Now, we have the 5,000, 10,000 and 1,00,000 values of ˆ̄Y from the 5,000, 10,000 and
1,00,000 samples for each sample n.

Step 3 : The mean squared error of ˆ̄Y is computed for each n by

MSE
( ˆ̄Y

)
=

1
5000

5000∑
i=1

( ˆ̄Y − Ȳ
)2
, (6.1)

where Ȳ is population mean of the study variable.
The MSE ratio of the investigated estimators to the current estimators for each sample size (n)

is computed to estimate the relative efficiency. All of the suggested estimators clearly outperform
the current ones across all sample sizes, demonstrating their greater effectiveness when compared to
conventional estimators. The simulation results support this observation, demonstrating the accuracy
of our theoretical results.

It is important to highlight that the suggested estimators’ efficiency significantly increases when
compared to the current estimators. To put it another way, the suggested estimators show considerably
higher efficiency in situations where outliers were more likely to occur in the data. The Tables 3–5
provide a brief overview of the results of the simulation after multiple iterations.

7. Analysis of numerical illustration and simulation study

From the Tables 1–3, the following interpretation can be found:

1. We present descriptions of five real-world data sets in the Table 1 to demonstrate the applications
of our research.

2. From the Table 2
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Table 4: Relative efficiencies (%) of the considered estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators
for simulation studies for 10,000 iterations

Sample Sizes Estimators ȳck1 ȳck2 ȳck3 ȳck4 ȳck5

n = 20

ȳsv1 283.7811 283.5358 281.2569 283.7217 278.9507
ȳsv2 283.9702 283.7247 281.4443 283.9108 279.1366
ȳsv3 285.8136 285.5665 283.2714 285.7538 280.9487
ȳsv4 283.8230 283.5776 281.2984 283.7636 278.9919
ȳsv5 287.4332 287.1847 284.8765 287.3731 282.5407

n = 30

ȳsv1 281.8515 281.6043 278.6550 281.8028 276.0324
ȳsv2 282.0411 281.7937 278.8425 281.9923 276.2181
ȳsv3 284.4471 284.1975 281.2211 284.3978 278.5743
ȳsv4 281.8860 281.6387 278.6891 281.8372 276.0661
ȳsv5 286.3941 286.1429 283.1461 286.3446 280.4812

n = 40

ȳsv1 282.4314 282.1826 278.6957 282.3882 275.6903
ȳsv2 282.6213 282.3723 278.8831 282.5781 275.8757
ȳsv3 285.4612 285.2097 281.6854 285.4175 278.6478
ȳsv4 282.4620 282.2132 278.7259 282.4189 275.7203
ȳsv5 287.7615 287.5080 283.9553 287.7175 280.8932

n = 50

ȳsv1 284.7022 284.4496 280.5371 284.6623 277.2014
ȳsv2 284.8955 284.6427 280.7276 284.8556 277.3896
ȳsv3 288.0771 287.8214 283.8626 288.0367 280.4873
ȳsv4 284.7308 284.4782 280.5653 284.6909 277.2293
ȳsv5 290.6930 290.4350 286.4403 290.6522 283.0343

(I) For Data Set-A, the PREs of the estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators
remain between 194.9832% to 221.5548% for the Population size of 65 and the sample size of
20.

(II) For data set B, with Population size 50 and sample size 20, the PREs of the estimators ȳsvi

(i = 1, 2, . . . , 5) over the existing estimators remain between 249.12% to 252.19%.

(III) For data set C, the PREs of the estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators
remain between 356.50% to 382.89% for the Population size of 34 and the sample size of 20.

(IV) For data set D, with Population size 80 and sample size 20, the PREs of the estimators ȳsvi

(i = 1, 2, . . . , 5) over the existing estimators remain between 377.31% to 382.23%.

(V) For data set E, the PREs of the estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators
remain between 266.57% to 293.98% for the Population size of 235 and the sample size of 20.

3. From the Table 3

(I) For sample size of 20 and the population size of 5000, the PREs of the suggested estimators
ȳsvi (i = 1, 2, . . . , 5) over the existing estimators remain between 282.49% to 291.16%.

(II) For sample size of 30 and the population size of 5000, the PREs of the suggested estimators
ȳsvi (i = 1, 2, . . . , 5) over the existing estimators remain between 275.73% to 286.17%.

(III) For sample size of 40 and the population size of 5000, the PREs of the suggested estima-
tors ȳsvi (i = 1, 2, . . . , 5) over the existing estimators remain between 274.22% to 286.26%.

(IV) For sample size of 50 and the population size of 5000, the PREs of the suggested estima-
tors ȳsvi (i = 1, 2, . . . , 5) over the existing estimators remain between 277.19% to 290.79%.

4. Similar results we will get from the Tables 4–5.
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Table 5: Relative efficiencies (%) of the considered estimators ȳsvi (i = 1, 2, . . . , 5) over the existing estimators
for simulation studies for 1,00,000 iterations

Sample Sizes Estimators ȳck1 ȳck2 ȳck3 ȳck4 ȳck5

n = 20

ȳsv1 283.8537 283.6076 281.3037 283.7942 278.9635
ȳsv2 284.0422 283.7959 281.4905 283.9826 279.1487
ȳsv3 285.8925 285.6447 283.3242 285.8326 280.9672
ȳsv4 283.8955 283.6494 281.3451 283.8360 279.0046
ȳsv5 287.5312 287.2819 284.9482 287.4709 282.5776

n = 30

ȳsv1 283.6235 283.3746 280.3902 283.5742 277.6850
ȳsv2 283.8144 283.5653 280.5789 283.7651 277.8719
ȳsv3 286.2491 285.9979 282.9859 286.1994 280.2556
ȳsv4 283.6584 283.4095 280.4247 283.6091 277.7192
ȳsv5 288.2599 288.0069 284.9737 288.2098 282.2243

n = 40

ȳsv1 282.6203 282.3717 278.8912 282.5771 275.8742
ȳsv2 282.8102 282.5614 279.0786 282.7670 276.0596
ȳsv3 285.6450 285.3937 281.8760 285.6013 278.8267
ȳsv4 282.6510 282.4024 278.9215 282.6078 275.9042
ȳsv5 287.9584 287.7051 284.1589 287.9144 281.0849

n = 50

ȳsv1 282.9058 282.6569 278.8137 282.8660 275.5154
ȳsv2 283.0956 282.8465 279.0007 283.0558 275.7003
ȳsv3 286.2084 285.9566 282.0685 286.1682 278.7318
ȳsv4 282.9342 282.6853 278.8417 282.8945 275.5432
ȳsv5 288.7843 288.5303 284.6072 288.7438 281.2404

We introduced and compared our estimators, designated as ȳsvi (i = 1, 2, . . . , 5), to current ap-
proaches in our research of real-world datasets. Our estimators frequently beat the alternatives in a
variety of situations with different population sizes and sample sizes, demonstrating their efficiency in
predicting population characteristics. Notably, all of our suggested relative efficiency (RE%) values
were greater than 100%, showing clearly that our estimators are more efficient than existing estima-
tors. We strongly advise survey practitioners to use these estimators since they offer excellent and
trustworthy estimations for a variety of survey applications.

8. Conclusions

In the presence of outliers, using traditional statistical approaches for data analysis might lead to in-
correct outcomes. Robust regression approaches have been used to enhance methods for predicting
the population mean in order to solve this problem. This article presents an innovative approach for
analysing sample survey data, concentrating on the development of exponential estimators of the ratio
type using the Huber M-function. The study compares these newly suggested estimators’ mean square
errors (MSEs) to those of the estimators previously proposed by Kadlar, Candan, and Cingi in 2007.
The study offers a thorough review that includes both theoretical derivations and actual implementa-
tions. The results of the study constantly show that the newly suggested estimators work better than
their competitors, producing lower MSEs under different circumstances. The aforementioned findings
are supported by rigorous numerical illustrations and simulation studies, that intentionally take into
account the existence of outliers in the data. As a result, the estimators based on the robust regression
techniques given in this article outperformed the estimators from Kadilar et al. (2007) across both
real-world data sets and simulated scenarios. The positive findings of this study not only confirm
the effectiveness of the suggested estimators but also open the door for future efforts to broaden the
applicability of estimators across various sampling techniques. This article advances data analysis
methods, especially in situations where outliers are a challenge. It also holds significant potential
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for applications in a variety of industries, including business, economics, and agriculture, which will
eventually encourage intelligent policy development. Future research will be conducted to improve
and diversify the estimator toolbox for sample surveys.
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Appendix A: R - Code

# Load necessary libraries

library(quantreg)

# Load the ‘engel’ dataset

data(engel)

# Define the variable (food expenditure) and (income)

Y <- engel$foodexp

X <- engel$income

# Calculate the means variables

Ybar <- mean(Y)

Xbar <- mean(X)

# Specify the number of bootstrap replications (5000, 10000, 100000)

B <- 100000

# Set the sample size ‘n’ (20, 30, 40, 50)

n <- 50

# Define ‘N’ as the length of the ’income’ vector

N <- length(engel$income)

# Initialize vectors to store results for different estimators

T1.1 <- numeric(B)

T1.2 <- numeric(B)

T1.3 <- numeric(B)

T1.4 <- numeric(B)

T1.5 <- numeric(B)

P1.1 <- numeric(B)

P1.2 <- numeric(B)

P1.3 <- numeric(B)

P1.4 <- numeric(B)

P1.5 <- numeric(B)
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# Loop for bootstrap replications

for (K in 1:B) {

# Randomly sample data without replacement to create a bootstrap sample

swor <- sample(N, size = n, replace = FALSE)

y <- engel$foodexp[swor]

x <- engel$income[swor]

ybar <- mean(y)

xbar <- mean(x)

Cx <- sd(x) / mean(x)

B2 <- kurtosis(x)

library(MASS)

Br1 <- rlm(y ˜ x)

Br <- Br1$coefficients[2]

# Calculate various estimators

T1.1[K] <- ((ybar + Br * (Xbar - xbar)) / xbar) * Xbar

T1.2[K] <- ((ybar + Br * (Xbar - xbar)) / (xbar + Cx)) * (Xbar + Cx)

T1.3[K] <- ((ybar + Br * (Xbar - xbar)) / (xbar + B2)) * (Xbar + B2)

T1.4[K] <- ((ybar + Br * (Xbar - xbar)) / (xbar * B2 + Cx)) * (Xbar * B2 + Cx)

T1.5[K] <- ((ybar + Br * (Xbar - xbar)) / (xbar * Cx + B2)) * (Xbar * Cx + B2)

P1.1[K] <- (ybar + Br * (Xbar - xbar)) * exp((Xbar - xbar) / (Xbar + xbar))

P1.2[K] <- (ybar + Br * (Xbar - xbar)) * exp((Xbar - xbar) / ((Xbar + xbar)

+ 2 * Cx))

P1.3[K] <- (ybar + Br * (Xbar - xbar)) * exp((Xbar - xbar) / ((Xbar + xbar)

+ 2 * B2))

P1.4[K] <- (ybar + Br * (Xbar - xbar)) * exp((B2 * (Xbar - xbar)) / (B2 * (Xbar

+ xbar) + 2 * Cx))

P1.5[K] <- (ybar + Br * (Xbar - xbar)) * exp((Cx * (Xbar - xbar)) / (Cx * (Xbar

+ xbar) + 2 * B2))

}

# Calculate Mean Squared Errors (MSE) for each estimator

MSEY1 <- mean((T1.1 - mean(T1.1))ˆ2)

MSEY2 <- mean((T1.2 - mean(T1.2))ˆ2)

MSEY3 <- mean((T1.3 - mean(T1.3))ˆ2)

MSEY4 <- mean((T1.4 - mean(T1.4))ˆ2)

MSEY5 <- mean((T1.5 - mean(T1.5))ˆ2)

d <- data.frame(MSEY1, MSEY2, MSEY3, MSEY4, MSEY5)

MSEYpr1 <- mean((P1.1 - mean(P1.1))ˆ2)

MSEYpr2 <- mean((P1.2 - mean(P1.2))ˆ2)

MSEYpr3 <- mean((P1.3 - mean(P1.3))ˆ2)

MSEYpr4 <- mean((P1.4 - mean(P1.4))ˆ2)

MSEYpr5 <- mean((P1.5 - mean(P1.5))ˆ2)
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d1 <- data.frame(MSEYpr1, MSEYpr2, MSEYpr3, MSEYpr4, MSEYpr5)

# Relative Efficiency

da1 <- c(MSEY1 / MSEYpr1, MSEY2 / MSEYpr1, MSEY3 / MSEYpr1, MSEY4 / MSEYpr1, MSEY5

/ MSEYpr1)

da2 <- c(MSEY1 / MSEYpr2, MSEY2 / MSEYpr2, MSEY3 / MSEYpr2, MSEY4 / MSEYpr2, MSEY5

/ MSEYpr2)

da3 <- c(MSEY1 / MSEYpr3, MSEY2 / MSEYpr3, MSEY3 / MSEYpr3, MSEY4 / MSEYpr3, MSEY5

/ MSEYpr3)

da4 <- c(MSEY1 / MSEYpr4, MSEY2 / MSEYpr4, MSEY3 / MSEYpr4, MSEY4 / MSEYpr4, MSEY5

/ MSEYpr4)

da5 <- c(MSEY1 / MSEYpr5, MSEY2 / MSEYpr5, MSEY3 / MSEYpr5, MSEY4 / MSEYpr5, MSEY5

/ MSEYpr5)

da <- c(da1, da2, da3, da4, da5)

RE_matrix <- matrix(da, ncol = 5, nrow = 5, byrow = T) * 100

# Display or export results

d # MSE results for T1 estimators

d1 # MSE results for P1 estimators

RE_matrix # Relative Efficiency matrix
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