• Title/Summary/Keyword: robust performance.

Search Result 3,625, Processing Time 0.042 seconds

Tracking maneuvering target using robust H$\infty$filter (견실한 H$\infty$필터를 이용한 기동표적의 추적)

  • 김준영;유경상;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.426-429
    • /
    • 1997
  • This paper proposes a robust H$_{\infty}$ tracking filter to improve the unacceptable target tracking performance for systems with parameter uncertainties. Also, we use here the input estimation approach to account for the possibility of maneuver. Simulation results show that the robust H$_{\infty}$ tracking filter which is proposed here to solve the systems with all system parameter uncertainties, has a good tracking performance for a maneuvering target tracking problem.m.

  • PDF

Sliding Mode Active Queue Management Algorithm

  • Roudsari, Farzad Habibipour;Jalili-Kharaajoo, Mahdi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.227-231
    • /
    • 2004
  • In this paper, a robust Sliding Mode Variable Structure (SMVS) controller is designed for Active Queue Management (AQM). This type of controller is insensitive to noise and variance of the parameters, thus it is suitable to time varying network systems. Simulation results conform the robust performance of SMVS controller against the disturbance. At the same time, a complete comparison between SMVS and PI controllers is made. The conclusion is that both transient and steady state performance of SMVS controller is better than that of PI one.

  • PDF

Robust controller design of underwater vehicle against structured perturbation (구조화된 교란에 대한 수중 운동체의 견실 제어기 설계)

  • 이갑래;김삼수;이재명;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.850-856
    • /
    • 1992
  • The problem of robust control of a underwater vehicle subject to variation of a real parameter and velocity is considered. The controller set which stabilized perturbed plant is chosen using numerical gradient method and the controller is used for nominal performance and robust performance. Simulation results are presented to show that the precise montion control of the controller is accomplished under perturbation in the system.

  • PDF

Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method (시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

Robust integral tracking control of Magnetic Levitating System via feedback linearization

  • Wonkee Son;Kim, Yongjun;Park, Jinyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.2-48
    • /
    • 2001
  • This paper deals with robust integral tracking control problem based on Lyapunov method via FL(Feedback Linearization) in order to solve a reference tracking problem of nonlinear system with parameter uncertainties. To overcome a restrictive matching condition the uncertainties is characterized in a suitable form. The design procedure which combine FL and LMIs(Linear Matrix Inequalities) based on Lyapunov method to achieve the robust performance and stability is developed. Finally, the performance of proposed controller is demonstrated via simulation of a linear reference tracking problem in the MLS(Magnetic levitating System).

  • PDF

Robust Sinusoidal Tracking of High Performance Torsional Plants

  • Oloomi, Hossein M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1581-1586
    • /
    • 2004
  • In this paper, we study the tracking performance of a torsion disk system where the plant is required to track a triangular-type command signal with a small steady state error and delay. We investigate the tracking performance of the traditional inner/outer loop approach and underline its limitations in high performance applications. We then design a more advanced controller using the mixed sensitivity robust control approach and show that the tracking performance of the system can be improved substantially. The success of the design, even for the case of lightly damped plants such as the one considered in this paper, is largely the result of the proper weights selection used in the mixed sensitivity design. The main contribution of this paper is, therefore, the development of design guidelines for the weights selection when accurate tracking of periodic reference signals are desired.

  • PDF

Robust Estimator of Location Parameter

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.153-160
    • /
    • 2004
  • In recent years, the size of data set which we usually handle is enormous, so a lot of outliers could be included in data set. Therefore the robust procedures that automatically handle outliers become very importance issue. We consider the robust estimation problem of location parameter in the univariate case. In this paper, we propose a new method for defining robustness weights for the weighted mean based on the median distance of observations and compare its performance with several existing robust estimators by a simulation study. It turns out that the proposed method is very competitive.

Robust Predictive Control of Robot Manipulator with The Bound Estimation

  • Kim, Jung-Kwan;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.5-155
    • /
    • 2001
  • The robust predictive control law which use the bound estimation is proposed for uncertain robot manipulators. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about model, it´s an important tend to design a robust control law that will guarantee the desired performance of the manipulator under uncertain elements. In the preceeding work, the robust predictive control law was proposed. In this work, we propose a class of robust predictive control of manipulators with the bound estimate technique and fe stability based on Lyapunov function is presented.

  • PDF

Robust Parameter Design for Multiple Quality Characteristics using Factor Analysis

  • Kwon, Yong-Man;Chang, Duk-Joon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.131-139
    • /
    • 2004
  • Robust parameter design is to identify appropriate settings of control factors that make the system's performance robust to changes in the noise factors that represent the source of variation. In this paper, we introduce a factor analysis approach to simultaneously optimize multiple quality characteristics in the robust parameter design. An example is illustrated to compare it with already proposed method.

  • PDF

Transfer Alignment Algorithm using Robust filter (강인필터를 이용한 전달정렬 알고리즘)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.26-26
    • /
    • 2000
  • We study on the velocity matching algorithm for transfer alignment of inertial navigation system(INS) using robust H$_2$ filter. We suggest an uncertainty model for INS and apply the suggested discrete robust H$_2$ filter to the uncertainty model compared with kalman filter, the discrete robust H$_2$ filter is shown by simulation to have good performance of alignment time and accuracy.

  • PDF