• Title/Summary/Keyword: robust performance.

Search Result 3,668, Processing Time 0.027 seconds

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.

A License Plate Recognition System Robust to Vehicle Location and Viewing Angle (영상 내 차량의 위치 및 촬영 각도에 강인한 차량 번호판 인식 시스템)

  • Hong, Sungeun;Hwang, Sungsoo;Kim, Seongdae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.113-123
    • /
    • 2012
  • Recently, various attempts have been made to apply Intelligent Transportation System under various environments and conditions. Consequently, an accurate license plate recognition regardless of vehicle location and viewing angle is required. In this paper, we propose a novel license plate recognition system which exploits a) the format of license plates to remove false candidates of license plates and to extract characters in license plates and b) the characteristics of Hangul for accurate character recognition. In order to eliminate false candidates of license plates, the proposed method first aligns the candidates of license plates horizontally, and compares the position and the shape of objects in each candidate with the prior information of license plates provided by Korean Ministry of Construction & Transportation. The prior information such as aspect ratio, background color, projection image is also used to extract characters in license plates accurately applying an improved local binarization considering luminance variation of license plates. In case of recognizing Hangul in license plates, they are initially grouped according to their shape similarity. Then a super-class method, a hierarchical analysis based on key feature points is applied to recognize Hangul accurately. The proposed method was verified with high recognition rate regardless of background image, which eventually proves that the proposed LPR system has high performance regardless of the vehicle location or viewing angle.

New Methods for Estimation of Time Delay and Time-Frequency Delay in Impulsive NOise Environment Using FNOM and MD Criterion (임펄스 잡음 환경 하에서 FNOM와 MD를 이용한 새로운 시지연 및 시간-주파수 지연 복합 추정 방법)

  • Lee, Jin;Jung, Jung-Kyun;Lee, Young-Seok;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.96-104
    • /
    • 1997
  • In this paper, we proposed new methods for estimation of time delay and time-frequency delay in impulsive noise environment. The proposed methods are developed using the theory of ${\alpha}-stable$ distribution, including the fractional negative order moment(FNOM) and minimum dispersion(MD), which are formulated for the time delay estimation and the fractional negative order ambiguity function and complex minimum dispersion, which are difined for the joint estimation of time delay and frequency delay. Through simulation work, its performance was compared with various other algorithms. As a result, while the conventional approaches based on second-order statistics are only verified in Gaussian noise environent ($S{\alpha}S$ noise with ${\alpha}$=2) and also the recently proposed robust methods by Nikias[7] are verified only in limited impulse noise ($S{\alpha}S$ noise with the range of $1<{\alpha}{\le}2$), the methods proposed are able to estimate the time delay in Gaussian and any impulsive noise environments($S{\alpha}S$ noise with the range of $0<{\alpha}{\le}2$).

  • PDF

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Performance Analysis of New LMMSE Channel Interpolation Scheme Based on the LTE Sidelink System in V2V Environments (V2V 환경에서 LTE 기반 사이드링크 시스템의 새로운 LMMSE 채널 보간 기법에 대한 성능 분석)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.15-23
    • /
    • 2016
  • To support the telematics and infotainment services, vehicle-to-everything (V2X) communication requires a robust and reliable network. To do this, the 3rd Generation Partnership Project (3GPP) has recently developed V2X communication. For reliable communication, accurate channel estimation should be done. However, because vehicle speed is very fast, radio channel is rapidly changed with time. Therefore, it is difficult to accurately estimate the channel. In this paper, we propose the new linear minimum mean square error (LMMSE) channel interpolation scheme based on the Long Term Evolution (LTE) sidelink system in vehicle-to-vehicle (V2V) environments. In our proposed reduced decision error (RDE) channel estimation scheme, LMMSE channel estimation is applied in the pilot symbol, and then in the data symbol, smoothing and LMMSE channel interpolation scheme is applied. After that, time and frequency domain averaging are applied to obtain the whole channel frequency response. In addition, the LMMSE equalizer of the receiver side can reduce the error propagation due to the decision error. Therefore, it is possible to detect the reliable data. Analysis and simulation results demonstrate that the proposed scheme outperforms currently conventional schemes in normalized mean square error (NMSE) and bit error rate (BER).

Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm (ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계)

  • Kim, Hyun-Ki;Jin, Yong-Tak;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.

An Improved License Plate Recognition Technique in Outdoor Image (옥외영상의 개선된 차량번호판 인식기술)

  • Kim, Byeong-jun;Kim, Dong-hoon;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.423-431
    • /
    • 2016
  • In general LPR(License Plate Recognition) in outdoor image is not so simple differently from in the image captured from manmade environment, because of geometric shape distortion and large illumination changes. this paper proposes three techniques for LPR in outdoor images captured from CCTV. At first, a serially connected multi-stage Adaboost LP detector is proposed, in which different complementary features are used. In the proposed detector the performance is increased by the Haar-like Adaboost LP detector consecutively connected to the MB-LBP based one in serial manner. In addition the technique is proposed that makes image processing easy by the prior determination of LP type, after correction of geometric distortion of LP image. The technique is more efficient than the processing the whole LP image without knowledge of LP type in that we can take the appropriate color to gray conversion, accurate location for separation of text/numeric character sub-images, and proper parameter selection for image processing. In the proposed technique we use DBN(Deep Belief Network) to achieve a robust character recognition against stroke loss and geometric distortion like slant due to the incomplete image processing.

Error-Tolerant Music Information Retrieval Method Using Query-by-Humming (허밍 질의를 이용한 오류에 강한 악곡 정보 검색 기법)

  • 정현열;허성필
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.488-496
    • /
    • 2004
  • This paper describes a music information retrieval system which uses humming as the key for retrieval Humming is an easy way for the user to input a melody. However, there are several problems with humming that degrade the retrieval of information. One problem is a human factor. Sometimes people do not sing accurately, especially if they are inexperienced or unaccompanied. Another problem arises from signal processing. Therefore, a music information retrieval method should be sufficiently robust to surmount various humming errors and signal processing problems. A retrieval system has to extract pitch from the user's humming. However pitch extraction is not perfect. It often captures half or double pitches. even if the extraction algorithms take the continuity of the pitch into account. Considering these problems. we propose a system that takes multiple pitch candidates into account. In addition to the frequencies of the pitch candidates. the confidence measures obtained from their powers are taken into consideration as well. We also propose the use of an algorithm with three dimensions that is an extension of the conventional DP algorithm, so that multiple pitch candidates can be treated. Moreover in the proposed algorithm. DP paths are changed dynamically to take deltaPitches and IOIratios of input and reference notes into account in order to treat notes being split or unified. We carried out an evaluation experiment to compare the proposed system with a conventional system. From the experiment. the proposed method gave better retrieval performance than the conventional system.

Automatic speech recognition using acoustic doppler signal (초음파 도플러를 이용한 음성 인식)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.74-82
    • /
    • 2016
  • In this paper, a new automatic speech recognition (ASR) was proposed where ultrasonic doppler signals were used, instead of conventional speech signals. The proposed method has the advantages over the conventional speech/non-speech-based ASR including robustness against acoustic noises and user comfortability associated with usage of the non-contact sensor. In the method proposed herein, 40 kHz ultrasonic signal was radiated toward to the mouth and the reflected ultrasonic signals were then received. Frequency shift caused by the doppler effects was used to implement ASR. The proposed method employed multi-channel ultrasonic signals acquired from the various locations, which is different from the previous method where single channel ultrasonic signal was employed. The PCA(Principal Component Analysis) coefficients were used as the features of ASR in which hidden markov model (HMM) with left-right model was adopted. To verify the feasibility of the proposed ASR, the speech recognition experiment was carried out the 60 Korean isolated words obtained from the six speakers. Moreover, the experiment results showed that the overall word recognition rates were comparable with the conventional speech-based ASR methods and the performance of the proposed method was superior to the conventional signal channel ASR method. Especially, the average recognition rate of 90 % was maintained under the noise environments.

A Bayesian Approach to Gumbel Mixture Distribution for the Estimation of Parameter and its use to the Rainfall Frequency Analysis (Bayesian 기법을 이용한 혼합 Gumbel 분포 매개변수 추정 및 강우빈도해석 기법 개발)

  • Choi, Hong-Geun;Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • More than half of annual rainfall occurs in summer season in Korea due to its climate condition and geographical location. A frequency analysis is mostly adopted for designing hydraulic structure under the such concentrated rainfall condition. Among the various distributions, univariate Gumbel distribution has been routinely used for rainfall frequency analysis in Korea. However, the distributional changes in extreme rainfall have been globally observed including Korea. More specifically, the univariate Gumbel distribution based rainfall frequency analysis is often fail to describe multimodal behaviors which are mainly influenced by distinct climate conditions during the wet season. In this context, we purposed a Gumbel mixture distribution based rainfall frequency analysis with a Bayesian framework, and further the results were compared to that of the univariate. It was found that the proposed model showed better performance in describing underlying distributions, leading to the lower Bayesian information criterion (BIC) values. The mixed Gumbel distribution was more robust for describing the upper tail of the distribution which playes a crucial role in estimating more reliable estimates of design rainfall uncertainty occurred by peak of upper tail than single Gumbel distribution. Therefore, it can be concluded that the mixed Gumbel distribution is more compatible for extreme frequency analysis rainfall data with two or more peaks on its distribution.