• 제목/요약/키워드: robust performance.

검색결과 3,668건 처리시간 0.034초

대용량 위성영상 처리를 위한 FAST 시스템 설계 (FAST Design for Large-Scale Satellite Image Processing)

  • 이영림;박완용;박현춘;신대식
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

고속 푸리에 합성곱을 이용한 파지 조건에 강인한 촉각센서 기반 물체 인식 방법 (Tactile Sensor-based Object Recognition Method Robust to Gripping Conditions Using Fast Fourier Convolution Algorithm)

  • 허현석;김정중;고두열;김창현;이승철
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.365-372
    • /
    • 2022
  • The accurate object recognition is important for the precise and accurate manipulation. To enhance the recognition performance, we can use various types of sensors. In general, acquired data from sensors have a high sampling rate. So, in the past, the RNN-based model is commonly used to handle and analyze the time-series sensor data. However, the RNN-based model has limitations of excessive parameters. CNN-based model also can be used to analyze time-series input data. However, CNN-based model also has limitations of the small receptive field in early layers. For this reason, when we use a CNN-based model, model architecture should be deeper and heavier to extract useful global features. Thus, traditional methods like RN N -based and CN N -based model needs huge amount of learning parameters. Recently studied result shows that Fast Fourier Convolution (FFC) can overcome the limitations of traditional methods. This operator can extract global features from the first hidden layer, so it can be effectively used for feature extracting of sensor data that have a high sampling rate. In this paper, we propose the algorithm to recognize objects using tactile sensor data and the FFC model. The data was acquired from 11 types of objects to verify our posed model. We collected pressure, current, position data when the gripper grasps the objects by random force. As a result, the accuracy is enhanced from 84.66% to 91.43% when we use the proposed FFC-based model instead of the traditional model.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

L0 Norm 기반의 LE(Local Effect) 연산자를 이용한 디지털 이미지 위변조 검출 기술 개발 (Development of Digital Image Forgery Detection Method Utilizing LE(Local Effect) Operator based on L0 Norm)

  • 최용수
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.153-162
    • /
    • 2020
  • 디지털 이미지 위조 탐지는 디지털 포렌식 분야에서 매우 중요한 분야 중 하나이다. 기술의 발전을 통해 위조된 이미지가 자연스럽게 바뀜에 따라 이미지 위조를 감지하기 어렵게 만들었다. 본 논문에서는 디지털 이미지에서 복사 붙여넣기 위조에 대한 수동적 위조 검출을 이용한다. 또한, L0 Norm 기반 LE 연산자를 사용해 복사 붙여넣기 위조를 검출함과 동시에 기존에 존재하던 L2, L1 Norm 기반 LE 연산자를 이용한 위조 검출 정확도를 비교하였다. 제안한 하삼각 윈도우를 적용하고 L2, L1 및 L0 Norm 기반 LE 연산자를 통해 BAG 불일치를 검출하고 위조 검출률을 측정하였다. 검출률의 비교에서 제안한 하삼각 윈도우는 기존의 윈도우 필터보다 BAG 불일치 검출에 강인함을 볼 수 있었다. 또한, 하삼각 윈도우를 쓰는 경우 L2, L1, L0 Norm LE 연산으로 갈수록 이미지 위조 검출의 성능이 점점 높게 측정되었다.

공정 개선에 따른 사고저항성 CrAl 코팅 피복관의 내마모성 향상 (Improved Coating Process for Enhanced Wear Resistance of CrAl Coated Claddings for Accident Tolerant Fuel)

  • 김성은;이영호;김대호;김현길
    • Tribology and Lubricants
    • /
    • 제38권4호
    • /
    • pp.136-142
    • /
    • 2022
  • This paper investigates the enhanced wear performance of a CrAl coated accident tolerant fuel (ATF) cladding. In the wake of the Fukushima accident, extensive research on ATF with respect to improving the oxidation resistance of cladding materials is ongoing. Since coated Zr claddings can be applied without major changes to the criteria for reactor core design, many researchers are studying coatings for claddings. To improve the quality of the CrAl coating layer, optimization of the manufacturing process is imperative. This study employs arc ion plating to obtain improved CrAl coated claddings using CrAl binary alloy targets through an improved coating method. Surface roughness and adhesion are improved, and droplets are reduced. Furthermore, the coated layer has a dense and fine microstructure. In scratch tests, all the tested CrAl coated claddings exhibit a superior resistance compared to the Zr cladding. In a fretting wear test, the wear volume of the CrAl coated claddings is smaller compared to the Zr cladding. Furthermore, the coated cladding manufactured through the improved process exhibits better wear resistance than other CrAl coated claddings. Based on these results, we suggest that fine microstructure is attributed to a mechanically and microstructurally robust CrAl coating layer, which enhances wear resistance.

Multi-level Cross-attention Siamese Network For Visual Object Tracking

  • Zhang, Jianwei;Wang, Jingchao;Zhang, Huanlong;Miao, Mengen;Cai, Zengyu;Chen, Fuguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3976-3990
    • /
    • 2022
  • Currently, cross-attention is widely used in Siamese trackers to replace traditional correlation operations for feature fusion between template and search region. The former can establish a similar relationship between the target and the search region better than the latter for robust visual object tracking. But existing trackers using cross-attention only focus on rich semantic information of high-level features, while ignoring the appearance information contained in low-level features, which makes trackers vulnerable to interference from similar objects. In this paper, we propose a Multi-level Cross-attention Siamese network(MCSiam) to aggregate the semantic information and appearance information at the same time. Specifically, a multi-level cross-attention module is designed to fuse the multi-layer features extracted from the backbone, which integrate different levels of the template and search region features, so that the rich appearance information and semantic information can be used to carry out the tracking task simultaneously. In addition, before cross-attention, a target-aware module is introduced to enhance the target feature and alleviate interference, which makes the multi-level cross-attention module more efficient to fuse the information of the target and the search region. We test the MCSiam on four tracking benchmarks and the result show that the proposed tracker achieves comparable performance to the state-of-the-art trackers.

BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구 (Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix)

  • 배준호;함성수;박성철;박귀일
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

휴대용 심전도 측정장치를 위한 실시간 QRS-complex 검출 알고리즘 개발 (Development of Real-time QRS-complex Detection Algorithm for Portable ECG Measurement Device)

  • 안휘;심형진;박재순;임종태;정연호
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.280-289
    • /
    • 2022
  • In this paper, we present a QRS-complex detection algorithm to calculate an accurate heartbeat and clearly recognize irregular rhythm from ECG signals. The conventional Pan-Tompkins algorithm brings false QRS detection in the derivative when QRS and noise signals have similar instant variation. The proposed algorithm uses amplitude differences in 7 adjacent samples to detect QRS-complex which has the highest amplitude variation. The calculated amplitude is cubed to dominate QRS-complex and the moving average method is applied to diminish the noise signal's amplitude. Finally, a decision rule with a threshold value is applied to detect accurate QRS-complex. The calculated signals with Pan-Tompkins and proposed algorithms were compared by signal-to-noise ratio to evaluate the noise reduction degree. QRS-complex detection performance was confirmed by sensitivity and the positive predictive value(PPV). Normal ECG, muscle noise ECG, PVC, and atrial fibrillation signals were achieved which were measured from an ECG simulator. The signal-to-noise ratio difference between Pan-Tompkins and the proposed algorithm were 8.1, 8.5, 9.6, and 4.7, respectively. All ratio of the proposed algorithm is higher than the Pan-Tompkins values. It indicates that the proposed algorithm is more robust to noise than the Pan-Tompkins algorithm. The Pan-Tompkins algorithm and the proposed algorithm showed similar sensitivity and PPV at most waveforms. However, with a noisy atrial fibrillation signal, the PPV for QRS-complex has different values, 42% for the Pan-Tompkins algorithm and 100% for the proposed algorithm. It means that the proposed algorithm has superiority for QRS-complex detection in a noisy environment.