• Title/Summary/Keyword: robust feature extraction

Search Result 220, Processing Time 0.024 seconds

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

An Improvement of Stochastic Feature Extraction for Robust Speech Recognition (강인한 음성인식을 위한 통계적 특징벡터 추출방법의 개선)

  • 김회린;고진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.180-186
    • /
    • 2004
  • The presence of noise in speech signals degrades the performance of recognition systems in which there are mismatches between the training and test environments. To make a speech recognizer robust, it is necessary to compensate these mismatches. In this paper, we studied about an improvement of stochastic feature extraction based on band-SNR for robust speech recognition. At first, we proposed a modified version of the multi-band spectral subtraction (MSS) method which adjusts the subtraction level of noise spectrum according to band-SNR. In the proposed method referred as M-MSS, a noise normalization factor was newly introduced to finely control the over-estimation factor depending on the band-SNR. Also, we modified the architecture of the stochastic feature extraction (SFE) method. We could get a better performance when the spectral subtraction was applied in the power spectrum domain than in the mel-scale domain. This method is denoted as M-SFE. Last, we applied the M-MSS method to the modified stochastic feature extraction structure, which is denoted as the MMSS-MSFE method. The proposed methods were evaluated on isolated word recognition under various noise environments. The average error rates of the M-MSS, M-SFE, and MMSS-MSFE methods over the ordinary spectral subtraction (SS) method were reduced by 18.6%, 15.1%, and 33.9%, respectively. From these results, we can conclude that the proposed methods provide good candidates for robust feature extraction in the noisy speech recognition.

A Robust Content-Based Music Retrieval System

  • Lee Kang-Kyu;Yoon Won-Jung;Park Kyu-Sik
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.229-232
    • /
    • 2004
  • In this paper, we propose a robust music retrieval system based on the content analysis of music. New feature extraction method called Multi-Feature Clustering (MFC) is proposed for the robust and optimum performance of the music retrieval system. It is demonstrated that the use of MFC significantly improves the system stability of music retrieval with better classification accuracy.

  • PDF

ICA+OPCA for Artifact-Robust Classification of EEG (ICA+OPCA를 이용한 잡음에 강인한 뇌파 분류)

  • Park, Sungcheol;Lee, Hyekyoung;Park, Seungjin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.739-741
    • /
    • 2003
  • Electroencephalogram (EEG)-based brain computer interface (BCI) provides a new communication channel between human brain and computer. EEG is very noisy data and contains artifacts, thus the extraction of features that are robust to noise and artifacts is important. In this paper we present a method with employ both independent component analysis (ICA) and oriented principal component analysis (OPCA) for artifact-robust feature extraction.

  • PDF

Gesture Extraction for Ubiquitous Robot-Human Interaction (유비쿼터스 로봇과 휴먼 인터액션을 위한 제스쳐 추출)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1062-1067
    • /
    • 2005
  • This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

Representation of MFCC Feature Based on Linlog Function for Robust Speech Recognition (강인한 음성 인식을 위한 선형 로그 함수 기반의 MFCC 특징 표현 연구)

  • Yun, Young-Sun
    • MALSORI
    • /
    • no.59
    • /
    • pp.13-25
    • /
    • 2006
  • In previous study, the linlog(linear log) RASTA(J-RASTA) approach based on PLP was proposed to deal with both the channel effect and the additive noise. The extraction of PLP required generally more steps and computation than the extraction of widely used MFCC. Thus, in this paper, we apply the linlog function to the MFCC for investigating the possibility of simple compensation method that removes both distortion. With the experimental results, the proposed method shows the similar tendency to the linlog RASTA-PLP_ When the J value is set to le-6, the best ERR(Error Reduction Rate) of 33% is obtained. For applying the linlog function to the feature extraction process, the J value plays a very important role in compensating the corruption. Thus, the study for the adaptive J or noise dependent J estimation is further required.

  • PDF

Development of Robust-to-Rotation Iris Feature Extraction Algorithms For Embedded System (임베디드 시스템을 위한 회전에 강인한 홍채특징 추출 알고리즘 개발)

  • Kim, Shik
    • The Journal of Information Technology
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.

  • PDF

Harmonics-based Spectral Subtraction and Feature Vector Normalization for Robust Speech Recognition

  • Beh, Joung-Hoon;Lee, Heung-Kyu;Kwon, Oh-Il;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.7-20
    • /
    • 2004
  • In this paper, we propose a two-step noise compensation algorithm in feature extraction for achieving robust speech recognition. The proposed method frees us from requiring a priori information on noisy environments and is simple to implement. First, in frequency domain, the Harmonics-based Spectral Subtraction (HSS) is applied so that it reduces the additive background noise and makes the shape of harmonics in speech spectrum more pronounced. We then apply a judiciously weighted variance Feature Vector Normalization (FVN) to compensate for both the channel distortion and additive noise. The weighted variance FVN compensates for the variance mismatch in both the speech and the non-speech regions respectively. Representative performance evaluation using Aurora 2 database shows that the proposed method yields 27.18% relative improvement in accuracy under a multi-noise training task and 57.94% relative improvement under a clean training task.

  • PDF

Development of Robust Feature Detector Using Sonar Data (초음파 데이터를 이용한 강인한 형상 검출기 개발)

  • Lee, Se-Jin;Lim, Jong-Hwan;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.35-42
    • /
    • 2008
  • This study introduces a robust feature detector for sonar data from a general fixed-type of sonar ring. The detector is composed of a data association filter and a feature extractor. The data association filter removes false returns provided frequently from sonar sensors, and classifies set of data from various objects and robot positions into a group in which all the data are from the same object. The feature extractor calculates the geometries of the feature for the group. We show the possibility of extracting circle feature as well as a line and a point features. The proposed method was applied to a real home environment with a real robot.