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Abstract
Electroencephalogram (EEG)-based brain computer interface (BCI) provides a new communication channel
between human brain and computer. EEG is very noisy data and contains artifacts, thus the extraction of features
that are robust to noise and artifacts is important. In this paper we present a method with employ both
independent component analysis (ICA) and oriented principal component analysis (OPCA) for artifact-robust

feature extraction.

1. Introduction

Brain computer interface (BCD) is a system which
translates a subject's intentions into a control signal
for a device, e.g., a computer application, a
wheelchair or a neuroprosthesis{1]. BCI provides a
new communication channel between human brains
and computers and adds a new dimension to human
computer interface (HCI). It was motivated by the
hope of creating new communication channels for
disabled persons, but recently draws attention in
multimedia communication [2]. In this paper pay
our attention to an electroencephalogram
(EEG)-based BCI system, thus, EEG pattern
analysis is critical.

One of main difficulties in analyzing EEG patterns,
lies in the fact that EEG data contain various
artifacts such as ocular artifact and muscle artifact.
This is an important problem, and many
researchers usually have rejected artifacts including
trials to get clean EEG data. ICA was shown to be
useful in removing these artifacts [3]. ICA finds a
nonorthogonal linear transform with basis
coefficients being statistically independent.

On the other hand, PCA is a well~known classical
method for dimensionality reduction. In the task of
EEG pattern recognition, principal component
features were shown to useful [4]. However
principal component directions do not consider the
effect of artifacts because these directions rely on
only signal subspace.

OPCA is an extension of PCA which is able to
find steered directions, depending on noise
distribution [5]. In fact OPCA aims at finding
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directions which maximize the ratio of signal
covariance to noise covariance. Hence principal
oriented components are expected to produce

artifact-robust features, in contrast to principal
component features.

In this paper we present a method which exploits
principal oriented component features for
artifact~robust EEG pattern recognition. Since
OPCA requires the noise covariance which is not
available in advance, we extract artifacts by ICA
and regenerate noisy data from these extracted
artifacts only. The principal oriented componént
features are used to train HMMs for classification.
The high performance of our method is confirmed
by experimental study on classifying EEG data into
4 categories which consist of left/right/up/down

movements during imagination.
2. OPCA

OPCA is an extension of the conventional PCA. In the
presence of undesirable subspaces (e.g. artifact
subspaces), OPCA searches for an optimal solution
oriented toward the directions where the unwanted
direction has minimum energy while maximizing the
projection energy of input signal . In fact OPCA finds
a direction which maximize the generalized Rayleigh
quotient for the matrix pencil (Rx’Rv) where R, is
the covariance matrix of the signal and R, is the
covariance matrix of the noise (unwanted signal).
Thus it corresponds to the symmetric generalized
eigenvalue problem.

The objective function for OPCA is given by the
signal-to-signal ratio (SSR) between two random
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Figure 1. A schematic diagram for our proposed method
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The objective function (1) is nothing but a
generalized Rayleigh quotient. A solution which
maximizes (1) corresponds to the largest generalized

eigenvector of the matrix pencil (Rx’Rv). Note that
R

v is assumed to be positive definite. The
direction W is steered by the distribution of V, in
contrast to PCA. When the random vector V has
isotropic distribution, OPCA becomes the ordinary

PCA.
3. Methods

We consider mainly C3 and C4 channels located in
sensorimotor cortex related with (imagery)
movements. Figure 1 shows a schematic diagram for
our proposed method. First we extract artifacts by
ICA. These extracted artifacts are used to reconstruct
unwanted signals which are required in OPCA. Data
segmentation converts a time series into a
multivariate signal so that OPCA can be applied.
Principa!l oriented component features are fed into
HMMs which are our classifiers. Depending on the
log-likelihood values, an appropriate class
(left/right/up/down) is determined.

4, Feature Extraction : ICA+OPCA

Ocular artifact (caused by eye movement/blinking)
and muscle artifact are exemplary unwanted signals
which severely influence evoked responses in an
unsuitable way. These artifacts could be minimized

by simply asking a subject to avoid eye
movement/blinking as much as possible. However a
subject's concentration on not moving his/her eyes
results in a secondary task which might disturb the
experimental protocol. A more reasonable way is to
discard the trials which are contaminated by
artifacts. This can be done by recording
electro-oculogram (EOG) signals. However we
might lose some useful information by throwing
away the portion of contaminated signals. For
example, if a subject is a disabled person who has
sporadic muscle activity, then most of EEG data
are contaminated by artifacts. Thus, it is desirable
to exploit features which are robust to artifacts,
which is our main interest in this paper. This
section describes how we extract artifact-robust
features by using ICA and OPCA.

5. Generation of Unwanted Signals by ICA

Given a set of measured EEG data denoted by

X =[x,%,%y], ICA finds a linear transformation B

such that each column vector of Y = BX consists of

statistically independent components. Some

components in Y correspond to artifacts and noise,
so their contribution can be eliminated by an inverse
mapping B~' with setting the
corresponding to artifacts to zeros.

In contrast, we keep only artifact components and

rows in Y

reconstruct the data by an inverse mapping V = By

with setting the rows in Y corresponding to
non-artifact components to zeros. In this way we
construct unwanted signals which will be used in
OPCA.

In order to automatically detect artifact
components in ICA, we use the EOG signal. The
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detection is carried out by Iinvestigating the
difference between the normalized magnitude of the
EOG signal and the independent component signals.
Alternatively correlations between the EOG signal
and the independent component signals can be
considered to detect ocular artifact components. In
general, muscle artifact signals have large variance,
Hence we sort independent components in a
descending order according to their variances, then
we treat first several components to be artifacts. In
this way, we extract artifacts by ICA in an

automatic fashion. Thus unwanted signals ¥ are
reconstructed. Any ICA algorithms can be used. In
this paper we use the flexible ICA algorithm which
exploits the generalized Gaussian density model and
the natural gradient in Stiefel manifold [6].

6. Oriented Principal Component Features

We consider the rows in both matrix X and the

unwanted signal matrix ¥ . The OPCA considers two

_ T
matrices, Rraw - Xranmw

correlation and
— T .
Rnoise =X noiseX noise, and solves a  generalized
eigenvalue problem:
RrawW = RnoiseAW (2)

The row vectors of W correspond to principal
oriented component directions. We compute OPCA
transforms for 4 different categories and two
channels (Ca and C4), which lead to eight different

WC’,.L’ Wc,.m Wc,.u’ WC,.D’

transformation matrices,
i=3,4 (L,R, U and D correspond
left/right/up/down movement, respectively).

to

7. Experimental Results

Table 1: The comparison of classification performance (mean
accuracy) for each session. The percent correct classification
is averaged over 8 different visual stimuli.

Method DH BH § BHL | Average
ICA=OPCA | 92,53 1 95.00 | 94.98 94.17
PCA 79.35 | 84.89 | 87.39 83.87

Table 2: The comparison of classification performance (mean
accuracy) between our method (ICA+OPCA) and the
PCA-based method (PCA) for 8 different data sets: S
(stick); A (alphabet); R (rope); W (wall); E (egg); B
(button); P (puzzle); M (mouse). The percent correct classi-
fication is computed by averaging 3 sessions' dominant hand
(DH); both hands (BH); both hands with language (BHL).

Methol

Types of visnal stinwli
STATR W] EGJTB] PN
95,83 | 0275 | 90.67 | 9475 1 90.26 | 00.17 | 8919 [ 9155
TO.67 | 85,17 | 8830 | 76.75 | 0837 | 82.25 | 80.37 | 79.92

ICA-OPCA
PCA

8. Conclusion

In this paper we have presented a method of
jointly employing ICA and OPCA for extracting
artifact-robust features. Artifacts extracted by ICA
were used to re—-generate unwanted signals which
are necessary in performing OPCA. Our extensive
experiments confirmed the high performance of our
method (ICA+OPCA), compared to the PCA-based
method that was shown to be better than other
features—based methods.
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