• 제목/요약/키워드: robust computation

검색결과 270건 처리시간 0.019초

Robust concurrent topology optimization of multiscale structure under load position uncertainty

  • Cai, Jinhu;Wang, Chunjie
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.529-540
    • /
    • 2020
  • Concurrent topology optimization of macrostructure and microstructure has attracted significant interest due to its high structural performance. However, most of the existing works are carried out under deterministic conditions, the obtained design may be vulnerable or even cause catastrophic failure when the load position exists uncertainty. Therefore, it is necessary to take load position uncertainty into consideration in structural design. This paper presents a computational method for robust concurrent topology optimization with consideration of load position uncertainty. The weighted sum of the mean and standard deviation of the structural compliance is defined as the objective function with constraints are imposed to both macro- and micro-scale structure volume fractions. The Bivariate Dimension Reduction method and Gauss-type quadrature (BDRGQ) are used to quantify and propagate load uncertainty to calculate the objective function. The effective properties of microstructure are evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The bi-directional evolutionary structural optimization (BESO) method is used to obtain the black-and-white designs. Several 2D and 3D examples are presented to validate the effectiveness of the proposed robust concurrent topology optimization method.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

PPD: A Robust Low-computation Local Descriptor for Mobile Image Retrieval

  • Liu, Congxin;Yang, Jie;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.305-323
    • /
    • 2010
  • This paper proposes an efficient and yet powerful local descriptor called phase-space partition based descriptor (PPD). This descriptor is designed for the mobile image matching and retrieval. PPD, which is inspired from SIFT, also encodes the salient aspects of the image gradient in the neighborhood around an interest point. However, without employing SIFT's smoothed gradient orientation histogram, we apply the region based gradient statistics in phase space to the construction of a feature representation, which allows to reduce much computation requirements. The feature matching experiments demonstrate that PPD achieves favorable performance close to that of SIFT and faster building and matching. We also present results showing that the use of PPD descriptors in a mobile image retrieval application results in a comparable performance to SIFT.

신뢰성 높은 서브밴드 선택을 이용한 잡음에 강인한 화자식별 (Noise Robust Speaker Identification using Reliable Sub-Band Selection in Multi-Band Approach)

  • 김성탁;지미경;김희린
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.127-130
    • /
    • 2007
  • The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional feature recombination technique does not produce notable performance improvement compared with the full-band system. To cope with this drawback, we introduce a new technique of sub-band likelihood computation in the feature recombination, and propose a new feature recombination method by using this sub-band likelihood computation. Furthermore, the reliable sub-band selection based on the signal-to-noise ratio is used to improve the performance of this proposed feature recombination. Experimental results shows that the average error reduction rate in various noise condition is more than 27% compared with the conventional full-band speaker identification system.

  • PDF

Robust and Efficient 3D Model of an Electromagnetic Induction (EMI) Sensor

  • Antoun, Chafic Abu;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.325-330
    • /
    • 2014
  • Eddy current induction is used in a wide range of electronic devices, for example in detection sensors. Due to the advances in computer hardware and software, the need for 3D computation and system comprehension is a requirement to develop and optimize such devices nowadays. Pure theoretical models are mostly limited to special cases. On the other hand, the classical use of commercial Finite Element (FE) electromagnetic 3D models is not computationally efficient and lacks modeling flexibility or robustness. The proposed approach focuses on: (1) implementing theoretical formulations in 3D (FE) model of a detection device as well as (2) an automatic Volumetric Estimation Method (VEM) developed to selectively model the target finite elements. Due to these two approaches, this model is suitable for parametric studies and optimization of the number, location, shape, and size of PCB receivers in order to get the desired target discrimination information preserving high accuracy with tenfold reduction in computation time compared to commercial FE software.

연산시간을 고려한 디지털 취적서보계의 주파수 특성 (Frequency-Domain Properties of Digital Optimal stems Servosystem Counting Computation Delays)

  • 이동철;하주식
    • 대한전기학회논문지
    • /
    • 제40권9호
    • /
    • pp.937-944
    • /
    • 1991
  • In digital controller design, the delays in the controller should be taken into consideration when the computation time of the processor is not negligibale compared with sampling time. Recently, Mita has proposed a digital optimal servosystem taking account of the delays in the controller. In this paper, robust stability and diturbance rejection properties of this optimal servosystej are analyzed in the frequency-domain. The well-known asymptotic properties of the optimal regulators with respect to the weighting matrices of the cost functions are successfully utilized to show that the influence of the delays in the controller are drastic for certain choice of the cost function Illustrative numerical examples are presented.

  • PDF

개선된 다중 구간 샘플링 배경제거 알고리즘 (An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.

Efficient 3D Model based Face Representation and Recognition Algorithmusing Pixel-to-Vertex Map (PVM)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.228-246
    • /
    • 2011
  • A 3D model based approach for a face representation and recognition algorithm has been investigated as a robust solution for pose and illumination variation. Since a generative 3D face model consists of a large number of vertices, a 3D model based face recognition system is generally inefficient in computation time and complexity. In this paper, we propose a novel 3D face representation algorithm based on a pixel to vertex map (PVM) to optimize the number of vertices. We explore shape and texture coefficient vectors of the 3D model by fitting it to an input face using inverse compositional image alignment (ICIA) to evaluate face recognition performance. Experimental results show that the proposed face representation and recognition algorithm is efficient in computation time while maintaining reasonable accuracy.

칼만 필터와 가변적 탐색 윈도우 기법을 적용한 강인한 이동 물체 추적 알고리즘 (Robust Tracking Algorithm for Moving Object using Kalman Filter and Variable Search Window Technique)

  • 김영군;현병용;조영완;서기성
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.673-679
    • /
    • 2012
  • This paper introduces robust tracking algorithm for fast and erratic moving object. CAMSHIFT algorithm has less computation and efficient performance for object tracking. However, the method fails to track a object if it moves out of search window by fast velocity and/or large movement. The size of the search window in CAMSHIFT algorithm should be selected manually also. To solve these problems, we propose an efficient prediction technique for fast movement of object using Kalman Filter with automatic initial setting and variable configuration technique for search window. The proposed method is compared to the traditional CAMSHIFT algorithm for searching and tracking performance of objects on test image frames.

조명 변화에 강인한 로봇 축구 시스템의 색상 분류기 (Robust Color Classifier for Robot Soccer System under Illumination Variations)

  • 이성훈;박진현;전향식;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.32-39
    • /
    • 2004
  • The color-based vision systems have been used to recognize our team robots, the opponent team robots and a ball in the robot soccer system. The color-based vision systems have the difficulty in that they are very sensitive to color variations brought by brightness changes. In this paper, a neural network trained with data obtained from various illumination conditions is used to classify colors in the modified YUV color space for the robot soccer vision system. For this, a new method to measure brightness is proposed by use of a color card. After the neural network is constructed, a look-up-table is generated to replace the neural network in order to reduce the computation time. Experimental results show that the proposed color classification method is robust under illumination variations.